Author(s): Jignesh B. Patel, Kiran M. Patel, Divyang H. Shah, Jimit S. Patel, Charoo S. Garg, Kinjal J. Brahmbhatt, Dhrubo Jyoti Sen


DOI: Not Available

Address: Jignesh B. Patel*, Kiran M. Patel, Divyang H. Shah, Jimit S. Patel, Charoo S. Garg, Kinjal J. Brahmbhatt and Dhrubo Jyoti Sen
Department of Pharmaceutical Chemistry, Shri Sarvajanik Pharmacy College, Gujarat Technological University, Arvind Baug, Mehsana-384001, Gujarat, India
*Corresponding Author

Published In:   Volume - 4,      Issue - 8,     Year - 2011

The recent discovery that magnetic resonance imaging can be used to map changes in brain hemodynamics that correspond to mental operations extends traditional anatomical imaging to include maps of human brain function. The ability to observe both the structures and also which structures participate in specific functions is due to a new technique called functional magnetic resonance imaging, fMRI, and provides high resolution, noninvasive reports of neural activity detected by a blood oxygen level dependent signal. This new ability to directly observe brain function opens an array of new opportunities to advance our understanding of brain organization, as well as a potential new standard for assessing neurological status and neurosurgical risk. Functional MRI is based on the increase in blood flow to the local vasculature that accompanies neural activity in the brain. These results in a corresponding local reduction in deoxyhemoglobin because the increase in blood flow occurs without an increase of similar magnitude in oxygen extraction. Thus, deoxyhemoglobin is sometimes referred to as an endogenous contrast enhancing agent, and serves as the source of the signal for fMRI. Consequently, the number of medical and research centers with fMRI capabilities and investigational programs continues to escalate. The main advantages to fMRI as a technique to image brain activity related to a specific task or sensory process include 1) the signal does not require injections of radioactive isotopes, 2) the total scan time required can be very short, i.e., on the order of 1.5 to 2.0 min per run (depending on the paradigm), and 3) the in-plane resolution of the functional image is generally about 1.5 x 1.5 mm although resolutions less than 1 mm are possible. To put these advantages in perspective, functional images obtained by the earlier method of positron emission tomography, PET, require injections of radioactive isotopes, multiple acquisitions, and, therefore, extended imaging times. Further, the expected resolution of PET images is much larger than the usual fMRI pixel size. Additionally, PET usually requires that multiple individual brain images are combined in order to obtain a reliable signal. Consequently, information on a single patient is compromised and limited to a finite number of imaging sessions. Although these limitations may serve many neuroscience applications, they are not optimally suitable to assist in a neurosurgical or treatment plan for a specific individual.

Cite this article:
Jignesh B. Patel, Kiran M. Patel, Divyang H. Shah, Jimit S. Patel, Charoo S. Garg, Kinjal J. Brahmbhatt, Dhrubo Jyoti Sen. Functional Magnetic Resonance Imaging: A New Diversion in Medical Diagnosis. Research J. Pharm. and Tech. 4(8): August 2011; Page 1167-1176.

Jignesh B. Patel, Kiran M. Patel, Divyang H. Shah, Jimit S. Patel, Charoo S. Garg, Kinjal J. Brahmbhatt, Dhrubo Jyoti Sen. Functional Magnetic Resonance Imaging: A New Diversion in Medical Diagnosis. Research J. Pharm. and Tech. 4(8): August 2011; Page 1167-1176.   Available on:


1.       Roy CS, Sherrington CS. "On the Regulation of the Blood-supply of the Brain". Journal of Physiology 11 (1-2): 85–158, 1890. 

2.       Raichle, M. E., Mintun, M. A.. "Brain Work and Brain Imaging". The Annual Review of Neuroscience 2006. 

3.       Laureys, S., Boly, M., Tononi, G.: "Functional Neuroimaging" in "The Neurology of Consciousness: Cognitive Neuroscience and Neuropathology" (Laureys, S., Tononi, G. eds.), Academic Press-Elsevier: 31-42, 2009.

4.       Ogawa, S., Lee, T.M., Nayak, A.S., and Glynn, P. "Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields". Magnetic Resonance in Medicine 14: 68–78, 1990. 

5.       Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, and Rosen BR. "Functional mapping of the human visual cortex by magnetic resonance imaging". Science 254: 716–719, 1991.

6.       KK Kwong, JW Belliveau, DA Chesler, IE Goldberg, RM Weisskoff, BP Poncelet, DN Kennedy, BE Hoppel, MS Cohen, R Turner, H Cheng, TJ Brady, and BR Rosen. "Dynamic Magnetic Resonance Imaging of Human Brain Activity During Primary Sensory Stimulation". PNAS 89: 5951–55, 1992.

7.       Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugubril K. "Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging". PNAS 89: 5675–79, 1992. 

8.       Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K. "Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model". Biophysical journal 64 (3): 803–12, 1993.

9.       Bandettini, P.A.; Jesmanowicz, A.; Wong, E.C.; Hyde, J.S. "Processing strategies for time-course data sets in functional MRI of the human brain". Magnetic Resonance in Medicine 30 (2): 161–173, 1993. 

10.     L Pauling and CD Coryell. "The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin". PNAS 22: 210–6, 1936.

11.     Gusnard DA, Raichle ME (2001). "Searching for a baseline: Functional imaging and the resting human brain". Nature Reviews Neuroscience 2 (10): 685–694, 2001.

12.     Yablonskiy DA, Haacke EM. "Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime". Magnetic Resonance in Medicine 32 (6): 749–63, 1994. 

13.     Konn D, Gowland P, Bowtell R. "MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere: a model for direct detection of neuronal currents in the brain."Magnetic Resonance in Medicine 50 (1): 40–49, 2003.

14.     Magistretti PJ, Pellerin L. "Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging." Philosophical Transactions of the Royal Society of London 29 (354(1387)): 1155–63, 1999. 

15.     Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. "Neurophysiological investigation of the basis of the fMRI signal.". Nature 412 (6843): 150–7, 2001.

16.     Yang, G. and Iadecola, C. "Glutamate microinjections in cerebellar cortex reproduce cerebrovascular effects of parallel fiber stimulation". Am J Physiol Regul Integr Comp Physiol 271 (6): R1568–1575, 1996.

17.     Bonvento, G.; Cholet, N.; Seylaz, J. "Sustained attenuation of the cerebrovascular response to a 10 min whisker stimulation following neuronal nitric oxide synthase inhibition". Neuroscience Research 37 (2): 163, 2000.

18.     Kim, D.; Duong, T.; Kim, S. "High-resolution mapping of iso-orientation columns by fMRI". Nature neuroscience 3 (2): 164–169, 2000.

19.     Malonek, D.; Grinvald, A. "Interactions Between Electrical Activity and Cortical Microcirculation Revealed by Imaging Spectroscopy: Implications for Functional Brain Mapping". Science 272 (5261): 551, 1996.

20.     Zarahn, E. "Spatial localization and resolution of BOLD fMRI". Current Opinion in Neurobiology 11 (2): 209–212, 2001.

21.     Behzadi, Y. et al. "Caffeine reduces the initial dip in the visual bold response at 3 t."Neuroimage 32 (1): 9–15, 2006.

22.     Di Salle, F.; Esposito, F.; Elefante, A.; Scarabino, T.; Volpicelli, A.; Cirillo, S.; Elefante, R.; Seifritz, E. "High field functional MRI". European journal of radiology 48 (2): 138–145, 2003.

23.     van der Zwaag W, Francis S, Head K, Peters A, Gowland P, Morris P, Bowtell R. "fMRI at 1.5, 3 and 7 T: Characterising BOLD signal changes.". Neuroimage 47 (4): 1425–34, 2009.

24.     Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. (November 1990). "The NMR phased array.". Magn Reson Med. 16 (2): 192–225, 1990.

25.     Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. "SENSE: Sensitivity encoding for fast MRI.". Magn Reson Med. 42 (5): 952–62, 1999.

26.     Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. "Generalized autocalibrating partially parallel acquisitions (GRAPPA).". Magn Reson Med. 47 (6): 1202–10, 2002.


28.     Shmuel et al. Negative fMRI response correlates with decreases in neuronal activity in monkey visual area V1. Nature Neurosci. 9(4):569-577, 2006.

29.     Logothetis, N.K.; Pauls, J; Augath, M; Trinath, T; Oeltermann, A. "Neurophysiological investigation of the basis of the fMRI signal." Nature 412 (6843): 150, 2001.

30.     Magalhaes, A. Functional magnetic resonance and spectroscopy in drug and substance abuse. Top Magnetic Resonance Imaging. 3, 247-251, 2005.

31.     Chen, C., Hou, B., Holodny, A. Effect of age and tumor grade on BOLD functional MR imaging in pre-operative assessment of patients with glioma. Radiology. 3, 971-978, 2008.

32.     Aguirre, G., Zarahn, E., and D’esposito, M. The variability of human BOLD hemodynamic responses. Neuroimage. 8 (4), 360-369, 1998.

33.     Corbetta, M., Miezin, F., Dobmeyer, S., Shulman, G., Petersen, S. Attentional modulation of neural processing of shape, color, and velocity in humans. Science. 4962, 1556-1559, 1990.

34.     Haller, S., Bartsch, A. Pitfalls in fMRI. European Radiology. 19, 2689-2706, 2009.

35.     Le Bihan D, et al. "Direct and fast detection of neuronal activation in the human brain with diffusion MRI". PNAS 103 (21): 8263–8268, 2006.

36.     Kohno S et al. "Water diffusion slowdown in the human visual cortex on visual stimulation precedes vascular responses". Journal of Cerebral Blood Flow & Metabolism 29 (6): 1197–1207, 2009. 

37.     Mandl RCW et al. "Functional diffusion tensor imaging: Measuring task-related fractional anisotropy changes in the human brain along white matter tracts". PLoS ONE 3 (11): 1–10, 2008.

38.     Detre, J.A., Leigh, J.S., Williams, D.S., and Koretsky, A.P. Perfusion imaging. Magn Reson Med 23, 37-45, 1992.

39.     Williams, D.S., Detre, J.A., Leigh, J.S., and Koretsky, A.P. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89, 212-216, 1992.

40.     Scott A. Huettel, Allen W. Song, Gregory McCarthy, Functional Magnetic Resonance Imaging, Sinauer Associates, 2004.

41.     Richard B. Buxton, An Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques, Cambridge Univ Press, 2002.

42.     Roberto Cabeza and Alan Kingstone, Editors, Handbook of Functional Neuroimaging of Cognition, Second Edition, MIT Press, 2006.

43.     Weiller C et al. "Role of functional imaging in neurological disorders". Journal of Magnetic Resonance Imaging 23 (6): 840–850, 2006.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available