Author(s):
Hasyrul Hamzah, Triana Hertiani, Sylvia Utami Tunjung Pratiwi, Titik Nuryastuti
Email(s):
hertiani@ugm.ac.id
DOI:
10.5958/0974-360X.2020.00923.3
Address:
Hasyrul Hamzah1,2, Triana Hertiani3*, Sylvia Utami Tunjung Pratiwi3, Titik Nuryastuti4
1Program Doctoral Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia.
2Faculty of Health and Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur 75124, Indonesia.
3Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia.
4Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta–55281, Indonesia.
*Corresponding Author
Published In:
Volume - 13,
Issue - 11,
Year - 2020
ABSTRACT:
Every year, the catheter-associated urinary tract infections (CAUTIs) experience a very significant number of increases. Urinary tract infections constitute about 30% of nosocomial infections, and about 75% of all bacterial species show biofilm production, which provides survival benefits to offering protection from environmental stresses and causing decreased susceptibility to antimicrobial agents. Until now the discovery of catheter antibiofilm compounds is still minimal, therefore the development of a new candidate antibiofilm for polymicrobial biofilms in catheters is a challenge that must be overcome in preventing catheter-associated urinary tract infections (CAUTIs). This study aimed to determine the effectiveness of quercetin in inhibited and decreased polymicrobial biofilm formation in catheters: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans. The test for inhibition of the degradation of polymicrobial biofilms on catheters was determined using the microtiter broth method. The use of quercetin on polymicrobial biofilms was analyzed by calculating the minimum biofilm inhibitory concentration (MBIC50) and the minimum value of biofilm eradication (MBEC50). The relationship of quercetin work against S. aureus, P. aeruginosa, E. coli, and C. albicans polymicrobial biofilms was tested by using scanning electron microscopy (SEM). Quercetin 1% gave 50% inhibitory activity to the formation of polymicrobial catheter biofilms at 24 h and 48 h at 53.55±0.01 and 50.38 ± 0.01 in comparison to control (nystatin and chloramphenicol). The results also proved evidence of quercetin activity that can degrade polymicrobial catheter biofilms by 46.48%±0.01 and damage the polymicrobial biofilm matrix extracellular polymeric substance (EPS) on the catheter. Quercetin seems to inhibitory activity against the formation of polymicrobial biofilms in catheters and is very potential to be developed as a candidate for new antibiofilm drugs against urinary tract infections.
Cite this article:
Hasyrul Hamzah, Triana Hertiani, Sylvia Utami Tunjung Pratiwi, Titik Nuryastuti. Efficacy of Quercetin against Polymicrobial Biofilm on Catheters. Research J. Pharm. and Tech. 2020; 13(11):5277-5282. doi: 10.5958/0974-360X.2020.00923.3
Cite(Electronic):
Hasyrul Hamzah, Triana Hertiani, Sylvia Utami Tunjung Pratiwi, Titik Nuryastuti. Efficacy of Quercetin against Polymicrobial Biofilm on Catheters. Research J. Pharm. and Tech. 2020; 13(11):5277-5282. doi: 10.5958/0974-360X.2020.00923.3 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-11-38
REFERENCES:
1. Nicolle, L.E. Catheter-associated urinary tract infections. Antimicrobial Resistance and Infection Control, 2014. 3: 23.
2. Weber, D.J., Sickbert-Bennett, E.E., Gould, C.V., Brown, V.M., Huslage, K., dan Rutala, W.A. Incidence of catheter-associated and non-catheter-associated urinary tract infections in a healthcare system. Infection Control and Hospital Epidemiology, 2011. 32: 822–823.
3. Burton, D.C., Edwards, J.R., Srinivasan, A., Fridkin, S.K., dan Gould, C.V. Trends in catheter-associated urinary tract infections in adult intensive care units-United States, 1990-2007. Infection Control and Hospital Epidemiology, 2011. 32: 748–756.
4. Tao, L., Hu, B., Rosenthal, V.D., Gao, X., dan He, L. Device-associated infection rates in 398 intensive care units in Shanghai, China: International Nosocomial Infection Control Consortium (INICC) findings. International Journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases, 2011. 15: e774-780.
5. Stepanovic S, Djukic N, Opavski N, and Djukic S. Significance of inoculum size in biofilm formation by staphylococci. New Microbiol. 2003. 26:129–32.
6. Mylotte, J.M. Nursing home-acquired bloodstream infection. Infection Control and Hospital Epidemiology, 26: 833–837 (2005).
7. Tenke, P., Riedl, C.R., Jones, G.L., Williams, G.J., Stickler, D., dan Nagy, E. Bacterial biofilm formation on urologic devices and heparin coating as a preventive strategy. International Journal of Antimicrobial Agents, 2004. 23 Suppl 1: S67-74.
8. Keshvardoust, P. et al. Biofilm formation inhibition and dispersal of multi-species communities containing ammonia-oxidising bacteria. npj Biofilms and Microbiomes. 2019. Vol. 5: 22.
9. Hamzah, H., Pratiwi, S.U.T., and, Hertiani, T. Efficacy of Thymol and Eugenol Against Polymicrobial Biofilm. E. coli, 2018. 29: 8.
10. Pierce, C.G., Vila, T., Romo, J.A., Montelongo-Jauregui, D., Wall, G., Ramasubramanian, A. The Candida albicans Biofilm Matrix: Composition, Structure, and Function. Journal of Fungi (Basel, Switzerland). 2017
11. Pratiwi SUT., Lagendijk EL., de Weert S., Hertiani T., Idroes R., Van Den Hondel CAMJJ. Effect of Cinnamomumburmannii Nees ex Bl. and Massoiaaromatica Becc. Essential oils on planktonic growth and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus in vitro. International Journal of Applied Research in Natural Product. 2015. 8, 1-13.
12. Hasyrul Hamzah, Triana Hertiani, Sylvia Utami Tunjung Pratiwi and Titik Nuryastuti. Inhibitory activity and degradation of curcumin as Anti-Biofilm Polymicrobial on Catheters. Int. J. Res. Pharm. Sci. 2002. 11, 830–835.
13. Stepanovic S, Djukic N, Opavski N, and Djukic S. Significance of inoculum size in biofilm formation by staphylococci. New Microbiol; 2003. 26:129–32.
14. Holá V., Růžička F., Votava M.: Impact of surface coating on the adherence of slime producing and nonproducing Staphylococcus epidermidis; Microbiologica; 2004. vol. 27; 3, p. 305-308.
15. Hess, D.J., Henry-Stanley, M.J., Barnes, A.M.T., Dunny, G.M., Wells, C.L. Ultrastructure of a Novel Bacterial Form Located in Staphylococcus aureus In Vitro and In Vivo Catheter-Associated Biofilms. J. Histochem. Cytochem.2012. 60, 770–776.
16. Sofer, M. dan Denstedt, J.D. Encrustation of biomaterials in the urinary tract. Current Opinion in Urology, 2000. 10: 563–569.
17. Andes, D., Nett, J., Oschel, P., Albrecht, R., Marchillo, K., dan Pitula, A. Development and Characterization of an In Vivo Central Venous Catheter Candida albicans Biofilm Model. Infection and Immunity, 2004. 72: 6023–6031.
18. Andersson, S., Kuttuva Rajarao, G., Land, C.J., dan Dalhammar, G. Biofilm formation and interactions of bacterial strains found in wastewater treatment systems: Biofilm formation and interactions of bacterial strains. FEMS Microbiology Letters, 2008. 283: 83–90.
19. Cowan, S.E., Gilbert, E., Liepmann, D., dan Keasling, J.D., n.d. 2015. 'Commensal Interactions in a Dual-Species Biofilm Exposed to Mixed Organic Compounds
20. Leriche, V., Briandet, R., dan Carpentier, B. Ecology of mixed biofilms subjected daily to a chlorinated alkaline solution: spatial distribution of bacterial species suggests a protective effect of one species to another. Environmental Microbiology, 2003. 5: 64–71.
21. Reid, G., H. C. van der Mei, C. Tieszer, and H. J. Busscher. Uropathogenic Escherichia coli adhere to urinary catheters without using fimbriae. FEMS Immunol. Med. Microbiol. 1996. 16:159–162.
22. Harriott, M.M. dan Noverr, M.C. Importance of Candida–bacterial polymicrobial biofilms in disease. Trends in Microbiology, 2011. 19: 557–563.
23. Lewis, R.E., Kontoyiannis, D.P., Darouiche, R.O., Raad, I.I., dan Prince, R.A. Antifungal activity of amphotericin B, fluconazole, and voriconazole in an in vitro model of Candida catheter-related bloodstream infection. Antimicrobial Agents and Chemotherapy, 2002. 46: 3499–3505.
24. Luzzati, R., Amalfitano, G., Lazzarini, L., Soldani, F., Bellino, S., Solbiati, M. Nosocomial candidemia in non-neutropenic patients at an Italian tertiary care hospital. European Journal of Clinical Microbiology and Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 2000. 19: 602–607.
25. Beiko, D. T., Knudsen, B. E., Watterson, J. D. Urinary tract biomaterials.J Urol ;171(6 Pt 1):2438–44(2004)
26. Stickler, D., Hughes, G.: Ability of Proteus mirabilis to swarm over urethral catheters; Eur.J.Clin.Microbiol.Infect.Dis. 1999. 18, 3, 206-208.
27. Hamzah, H., Pratiwi, S.U.T., Hertiani and Nuryastuti.T. The activity of Tannin on the Formation of Mono-Species and Polymicrobial Biofilm Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. TradMedJ. 2019. Vol 24, No 2.
28. Hamzah, H., Hertiani, T., Pratiwi, S. U. T., Murti, Y. B. and Nuryastuti, T. The Inhibition and Degradation Activity of Demethoxycurcumin as Antibiofilm on C. albicans ATCC 1023. Research J. Pharm. and Tech. 2020, (13), 1.
29. T, T. D. and P, G. Biofilm Formation Among Enterococci Species. Res. J. Pharm. Technol. 9, 1877–1879 (2016).
30. Abbas, H. A., Serry, F. M. and EL-Masry, E. M. N-acetylcysteine and Ambroxol: can mucolytics dissolve the resistance of biofilms to antibiotics. Res. J. Pharm. Technol. 5, 912–917 (2012).
31. Abbas, H. A., Serry, F. M. and EL-Masry, E. M. Non-steroidal anti-inflammatory drugs and sodium ascorbate potentiate the antibiotic activity against Pseudomonas aeruginosa biofilms. Res. J. Pharm. Technol. 5, 1124–1129 (2012).
32. Abbas, H. A., Serry, F. M. and EL-Masry, E. M. Biofilms: The Microbial Castle of Resistance. Res. J. Pharm. Technol. 6, 01–03 (2013).
33. Abbas, H. A., Abdo, I. M. and Moustafa, M. Z. In vitro Antibacterial and Antibiofilm Activities of Hibiscus sabdariffa L. Extract and Apple Vinegar against Bacteria Isolated from Diabetic Foot Infections. Res. J. Pharm. Technol. 7, 131–136 (2014).
34. Abbas, H. A., El-Sayed, M. A., Kamel, M. M. and Gamil, L. Allium kurrat and Eruca sativa are Natural agents for Inhibition and Eradication of Enterohemorrhagic Escherichia coli O157:H7 Biofilm. Res. J. Pharm. Technol. 7, 425–428 (2014).
35. Pushpam, A. C., Chelvan, R. K. Y., Ramalingam, K. and Vanitha, M. C. Evaluation of the Antibiofilm Properties of Arthrobacter defluvii AMET1677 Strain Isolated from Shrimp Pond Sediment against Marine Biofilm Forming Bacteria. Res. J. Pharm. Technol. 9, 373–380 (2016).
36. Kareem, M. H. and Hasan, A. Y. Inhibition of Biofilm formation of Imipenem-resistant Acinetobacter baumannii using Curcuma longa extracts, silver nanoparticles and Azithromycin. Res. J. Pharm. Technol. 12, 4463–4470 (2019).
37. Yazigi, H., Khamees, A. and Wakil, H. Acquired Urinary Tract Infection in the Public Hospital. Res. J. Pharm. Technol. 12, 1255–1258 (2019).