Author(s): Wasim Khan, Vaseem Ahmad Ansari, Zeashan Hussain

Email(s): , ,

DOI: 10.5958/0974-360X.2020.00973.7   

Address: Wasim Khan1, Vaseem Ahmad Ansari2*, Zeashan Hussain3
1Research Scholar, Faculty of Pharmacy, Integral University, Lucknow, UP.
2Associate Professor (Jr.), Faculty of Pharmacy, Integral University, Lucknow, UP.
3Professor/Director, Mahatma Gandhi Institute of Pharmacy, Lucknow, UP.
*Corresponding Author

Published In:   Volume - 13,      Issue - 11,     Year - 2020

Ophthalmic drug delivery is one of the most enthusiastic and tough goal today encountered by formulation scientists. The anterior and posterior parts of eye are constituted by many barriers, which are responsible for the less efficacy of conventional drug delivery system like eye ointments, drops and suspensions. Since these formulations are not in reach of posterior segment of eye and only treat anterior segment, the diseases of posterior segment can be treated with intravenous, intravitreal or periocular route. In this situation, the objective of formulation scientists is to develop a new system for ocular drug delivery that permits localized release of the drug for prolonged period of time, to improve the therapeutic efficacy and patient compliance, and minimize side effects, thus SNEEDS comes into existence. It is drug delivery system is stable (thermodynamically and kinetically) under mild agitation followed by dilution of aqueous media such as GI fluid and it can from stable O/W Nanoemulsion having size of globules is less than 100nm. To prevent the interfacial tension and improving the dissolution as well as absorption rate of drug molecule NDDS is required. Novel Drug Delivery System can be used for parenteral, ophthalmic preparations, intranasal and cosmetic drug delivery system. And in this review description ofbarriers (need), components, formulation aspects, characterization of SNEDDS is explained.

Cite this article:
Wasim Khan, Vaseem Ahmad Ansari, Zeashan Hussain. Self-Nano Emulsifying Drug delivery system (SNEEDS) for Ocular Administration. Research J. Pharm. and Tech. 2020; 13(11):5576-5582. doi: 10.5958/0974-360X.2020.00973.7

Wasim Khan, Vaseem Ahmad Ansari, Zeashan Hussain. Self-Nano Emulsifying Drug delivery system (SNEEDS) for Ocular Administration. Research J. Pharm. and Tech. 2020; 13(11):5576-5582. doi: 10.5958/0974-360X.2020.00973.7   Available on:

1.    Karakas H. Electrospinning of Nanofibers and Their Applications. Istanbul Tech Univ Text Technol Des Fac. 2015;(August):1–35.
2.    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–53.
3.    Bhattarai RS, Bachu RD, Boddu SHS, Bhaduri S. Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery. Pharmaceutics. 2019;11(1).
4.    Nayak R, Padhye R, Kyratzis IL, Truong YB, Arnold L. Recent advances in nanofibSre fabrication techniques. Text Res J. 2012;82(2):129–47.
5.    Yu D-G, Zhu L-M, White K, Branford-White C. Electrospun nanofiber-based drug delivery systems. Health (Irvine Calif). 2009;01(02):67–75.
6.    Vlachou M, Siamidi A KS. Electrospinning and drug delivery. Available from:
7.    Bera B. Literature Review on Electrospinning Process (A Fascinating Fiber Fabrication Technique). Imp J Interdiscip Res (IJIR. 201;2(8):972–84.
8.    Wang X, Kim YG, Drew C, Ku BC, Kumar J, Samuelson LA. Electrostatic Assembly of Conjugated Polymer Thin Layers on Electrospun Nanofibrous Membranes for Biosensors. Nano Lett. 2004;4(2):331–4.
9.    Akhgari A, Shakib Z, Sanati S. A review on electrospun nanofibers for oral drug delivery. Nanomedicine J. 2017;4(4):197–207.
10.    Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2018;11(8):1165–88.
11.    Singh S. World Journal of Pharmaceutical Research. Age (Omaha). 2015;20(8):60yrs.
12.    Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–47.
13.    Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater. 2012;2013(1)-1-22
14.    Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F. Regeneration of Bombyx mori silk by electrospinning - Part 1: Processing parameters and geometric properties. Polymer (Guildf). 2003;44(19):5721–7.
15.    Baumgarten PK. Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci. 1971;36(1):71–9.
16.    Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett. 2004;58(3–4):493–7.
17.    Lin Weng JX. Smart Electrospun Nanofibers for Controlled Drug Release: Recent Advances and New Perspectives. 2017;371(14):1280–3.
18.    Yang Q, Zhenyu LI, Hong Y, Zhao Y, Qiu S, Wang CE, et al. Influence of solvents on the formation of ultrathin uniform poly (vinyl pyrrolidone) nanofibers with electrospinning. J Polym Sci Part B Polym Phys. 2004;42(20):3721–6.
19.    Megelski S, Stephens JS, Bruce Chase D, Rabolt JF. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules. 2002;35(22):8456–66.
20.    Valencia Jacobs, Rajesh D. Anandjiwala MM. The Influence of Electrospinning Parameters on the Structural Morphology and Diameter of Electrospun Nanofibers. J Appl Polym Sci. 2010;116(5):2658–67.
21.    Fang J, Niu HT, Lin T, Wang XG. Applications of electrospun nanofibers. Chinese Sci Bull. 2008;53(15):2265–86.
22.    Gao Y, Truong YB, Zhu Y, Louis Kyratzis I. Electrospun antibacterial nanofibers: Production, activity, and in vivo applications. J Appl Polym Sci. 2014;131(18):9041–53.
23.    Daniel J Smith, Darrell H Reneker, Albert T McManus, Heidi L Schreuder-GIbson, Charlene Mello MSS. Electrospun Fibers and an apparatus therefor. Vol. US00675345. 2004.
24.    Khil MS, Cha D Il, Kim HY, Kim IS, Bhattarai N. Electrospun Nanofibrous Polyurethane Membrane as Wound Dressing. J Biomed Mater Res - Part B Appl Biomater. 2003;67(2):675–9.
25.    Spadaro JA, Berger TJ, Barranco SD, Chapin SE, Becker RO. Antibacterial effects of silver electrodes with weak direct current. Antimicrob Agents Chemother. 1974;6(5):637–42.
26.    Jeong EH, Yang J, Youk JH. Preparation of polyurethane cationomer nanofiber mats for use in antimicrobial nanofilter applications. Mater Lett. 2007;61(18):3991–4.
27.    Rani K, Paliwal S. A Review on Targeted Drug Delivery: its Entire Focus on Advanced Therapeutics and Diagnostics. Sch J Appl Med Sci. 2014;2(1):328–31.
28.    Chen Z, Mo X, Qing F. Electrospinning of collagen-chitosan complex. Mater Lett. 2007;61(16):3490–4.
29.    Ji Y, Ghosh K, Li B, Sokolov JC, Clark RAF, Rafailovich MH. Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications. Macromol Biosci. 2006;6(10):811–7.
30.    Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly (lactic acid), and a blend. J Control Release. 2002;81(1–2):57–64.
31.    Ramasamy SK. Structure and Functions of Blood Vessels and Vascular Niches in Bone. Stem Cells Int. 2017;2017(Figure 1).
32.    Sivaraj KK, Adams RH. Blood vessel formation and function in bone. Dev. 2016;143(15):2706–15.
33.    Vaz CM, van Tuijl S, Bouten CVC, Baaijens FPT. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 2005;1(5):575–82.
34.    Telemeco TA, Ayres C, Bowlin GL, Wnek GE, Boland ED, Cohen N, et al. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater. 2005;1(4):377–85.
35.    Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: Recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363–408.
36.    Wong HM, Chu PK, Leung FKL, Cheung KMC, Luk KDK, Yeung KWK. Engineered polycaprolactone-magnesium hybrid biodegradable porous scaffold for bone tissue engineering. Prog Nat Sci Mater Int. 2014;24(5):561–7.
37.    Sun Y, Cheng S, Lu W, Wang Y, Zhang P, Yao Q. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv. 2019;9(44):25712–29.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available