Author(s): Richie Bhandare, Vaishali Londhe, Akram Ashames, Nadeem Shaikh, Sham Zain Alabdin

Email(s): ,

DOI: 10.5958/0974-360X.2020.01043.4   

Address: Richie Bhandare1*, Vaishali Londhe2*, Akram Ashames1, Nadeem Shaikh2, Sham Zain Alabdin1
1Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE.
2SVKM’s NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Vile Parle [W], Mumbai, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 13,      Issue - 12,     Year - 2020

This study aimed to enhance the kinetic solubility of ACV by using microwave-assisted technique to form ACV co-crystals and overcome its limited aqueous solubility. Co-crystallization is one of the commonly used techniques to improve the dissolution rates of active pharmaceutical ingredients (APIs). Acyclovir (ACV) has a limited efficacy due to its low oral bioavailability resulted from its poor aqueous solubility and permeability. Acyclovir co-crystals were formulated by microwave assisted solvent extraction (MASE) in equimolar ratio of 1:1 with different co-formers. Physical and structural characterization by differential scanning calorimetry (DSC), powder x-ray diffraction (PXRD), and Fourier transform infrared (FTIR) spectroscopy were performed. Further evaluation of the co-crystals solubility, dissolution rate and content were carried out using the ultraviolet (UV) spectrophotometry. Co-crystals of acyclovir and tartaric acid (ACV-TA) in equimolar ratio of 1:1 produced by MASE using the glacial acetic acid as a solvent were more soluble compared to plain drug. The dissolution rate was increased from only 59.0% of pure acyclovir up to 85.0% of ACV co-crystals within 1 hour. DSC and PXRD patterns of co-crystals were distinguished from that of individual components. The UV-spectroscopic analysis represented 62.5% of acyclovir in the co-crystals, which was directly related to the theoretical percentage of the drug and its co-former (ACV: 60.01%, TA: 39.99%). This study revealed that the optimal ratio of the ACV-TA co-crystal is 1:1, which was successfully prepared using MASE technique. This method provides a promising alternative for enhancing the solubility of acyclovir with ultimately less time and solvent consumption.

Cite this article:
Richie Bhandare, Vaishali Londhe, Akram Ashames, Nadeem Shaikh, Sham Zain Alabdin. Enhanced Solubility of Microwave-assisted Synthesized Acyclovir Co-crystals. Research J. Pharm. and Tech. 2020; 13(12):5979-5986. doi: 10.5958/0974-360X.2020.01043.4

Richie Bhandare, Vaishali Londhe, Akram Ashames, Nadeem Shaikh, Sham Zain Alabdin. Enhanced Solubility of Microwave-assisted Synthesized Acyclovir Co-crystals. Research J. Pharm. and Tech. 2020; 13(12):5979-5986. doi: 10.5958/0974-360X.2020.01043.4   Available on:

1.    Florence AT, Attwood D. Physicochemical Principles of Pharmacy: In Manufacture, Formulation and Clinical Use. Pharmaceutical Press; 2015. 665 p.
2.    Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm. 2011;25;420(1):1–10.
3.    Hu J, Johnston DKP, III DROW. Nanoparticle Engineering Processes for Enhancing the Dissolution Rates of Poorly Water Soluble Drugs. Drug Dev Ind Pharm. 2004;1;30(3):233–45.
4.    Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;1;13(2):123–33.
5.    Kumar S, N A, a. Pharmaceutical Cocrystals: An Overview. Indian J Pharm Sci. 2018;15;79(6):858–71.
6.    Charoenchaitrakool M, Dehghani F, Foster NR, Chan HK. Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals. Ind Eng Chem Res. 2000;39(12):4794–802.
7.    Chhouk K, Diono W, Kanda H, Goto M. Micronization for Enhancement of Curcumin Dissolution via Electrospraying Technique. Chem Engineering. 2018;2(4):60.
8.    Rasenack N, Müller BW. [No Title]. Pharm Res. 2002;19(12):1894–900.
9.    Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations II: solubilization, binding constant, and complexation efficiency. Drug Discov Today. 2016;21(2):363–8.
10.    Bruni G, Maietta M, Maggi L, Mustarelli P, Ferrara C, Berbenni V, et al. Preparation and Physicochemical Characterization of Acyclovir Cocrystals with Improved Dissolution Properties. J Pharm Sci. 2013;102(11):4079–86.
11.    Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453(1):101–25.
12.    Almarsson Ö, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem Commun. 2004;(17):1889–96.
13.    Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59(7):617–30.
14.    Shan N, Zaworotko MJ. The role of cocrystals in pharmaceutical science. Drug Discov Today. 2008;13(9–10):440–6.
15.    Sathisaran I, Dalvi S. Engineering cocrystals of poorly water-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics. 2018;10(3):108.
16.    Schultheiss N, Newman A. Pharmaceutical Cocrystals and Their Physicochemical Properties. Cryst Growth Des. 2009;3;9(6):2950–67.
17.    Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical co-crystals. J Pharm Sci. 2006;95(3):499–516.
18.    Childs SL, Stahly GP, Park A. The Salt−Cocrystal Continuum: The Influence of Crystal Structure on Ionization State. Mol Pharm. 2007;4(3):323–38.
19.    Berry DJ, Steed JW. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv Drug Deliv Rev. 2017; 117:3–24.
20.    Sanphui P, Goud NR, Khandavilli UBR, Nangia A. Fast Dissolving Curcumin Cocrystals. Cryst Growth Des. 2011;7;11(9):4135–45.
21.    Shevchenko A, Miroshnyk I, Pietilä L-O, Haarala J, Salmia J, Sinervo K, et al. Diversity in Itraconazole Cocrystals with Aliphatic Dicarboxylic Acids of Varying Chain Length. Cryst Growth Des. 2013;6;13(11):4877–84.
22.    Lee K-S, Kim K-J, Ulrich J. Formation of Salicylic Acid/4,4′-Dipyridyl Cocrystals Based on the Ternary Phase Diagram. Chem Eng Technol. 2015;38(6):1073–80.
23.    Robertson CraigC, Wright JS, Carrington EJ, Perutz RN, Hunter CA, Brammer L. Hydrogen bonding vs. halogen bonding: the solvent decides. Chem Sci. 2017;8(8):5392–8.
24.    He G, Jacob C, Guo L, Chow PS, Tan RBH. Screening for Cocrystallization Tendency: The Role of Intermolecular Interactions. J Phys Chem B. 2008;1;112(32):9890–5.
25.    Lin H-L, Hsu P-C, Lin S-Y. Theophylline–citric acid co-crystals easily induced by DSC–FTIR microspectroscopy or different storage conditions. Asian J Pharm Sci. 2013;8(1):19–27.
26.    Chun N-H, Lee M-J, Song G-H, Chang K-Y, Kim C-S, Choi GJ. Combined anti-solvent and cooling method of manufacturing indomethacin–saccharin (IMC–SAC) co-crystal powders. J Cryst Growth. 2014; 408:112–8.
27.    Karki S, Friščić T, Jones W, Motherwell WDS. Screening for Pharmaceutical Cocrystal Hydrates via Neat and Liquid-Assisted Grinding. Mol Pharm. 2007;1;4(3):347–54.
28.    Nikkels AF, Pierard GE. Current Treatments of Muco-Cutaneous Herpes Simplex Virus Infections [Internet]. 2002 [cited 2019 Jan 28]. Available from: cmcaia/ 2002/00000001/ 00000001/art00007
29.    Nikkeis AF, Piérard GE. Recognition and Treatment of Shingles. Drugs. 1994;1;48(4):528–48.
30.    Fletcher C, Bean B, McLeod DC. Evaluation of oral acyclovir therapy. Drug Intell Clin Pharm. 1985;19(7–8):518–24.
31.    Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58(2):265–78.
32.    Bahrami Gh, Mirzaeei Sh, Kiani A. Determination of acyclovir in human serum by high-performance liquid chromatography using liquid–liquid extraction and its application in pharmacokinetic studies. J Chromatogr B. 2005;25;816(1):327–31.
33.    de Miranda P, Blum MR. Pharmacokinetics of acyclovir after intravenous and oral administration. J Antimicrob Chemother. 1983;1;12(suppl_B):29–37.
34.    Ramukutty S, Ramachandran E. Crystal growth by solvent evaporation and characterization of metronidazole. J Cryst Growth. 2012;351(1):47–50.
35.    Chow SF, Shi L, Ng WW, Leung KHY, Nagapudi K, Sun CC, et al. Kinetic Entrapment of a Hidden Curcumin Cocrystal with Phloroglucinol. Cryst Growth Des. 2014;14(10):5079–89.
36.    Hiendrawan S, Veriansyah B, Tjandrawinata RR. Solid-state properties and solubility studies of novel pharmaceutical co-crystal of Itraconazole. Int J Appl Pharm. 2018;8;10(5):97.
37.    Savjani JK, Pathak C. Improvement of physicochemical parameters of acyclovir using cocrystallization approach. Braz J Pharm Sci. 2016;52(4):727–34.
38.    Utami D, Nugrahani I, Ibrahim S. Mefenemic acid-Nicotinamide Co-crystal Synthesized by using melt crystallization method and its solubility study. Asian J Pharm Clin Res. 2017;1;135–9.
39.    Morampudi R, Mohammad SA, Prasad M, Khanduri CH. Pharmaceutical co-crystal of prulifloxacin with nicotinamide. Int J Pharm Pharm Sci. 2014;180–4.
40.    Muddukrishna BS, Dengale SJ, Shenoy GG, Bhat K. Preparation, solid state characterisation of Paclitaxel and Naringen Cocrystals with improved solubility. Int J Appl Pharm. 2016;8(4):32–7.
41.    Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm. 2011;31;419(1–2):1–11.
42.    Budiman A, Megantara S, Raraswati P, Qoriah T. Solid Dosage Form Development of Glibenclamide with Increasing the Solubility and Dissolution Rate Using Cocrystallization. Int J Appl Pharm. 2018;22;10(6):181.
43.    Hiendrawan S, Veriansyah B, Widjojokusumo E, Soewandhi SN, Wikarsa S, Tjandrawinata RR. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid. Int J Pharm. 2016;30;497(1–2):106–13.
44.    Huang Y, Zhang B, Gao Y, Zhang J, Shi L. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability. J Pharm Sci. 2014;103(8):2330–7.
45.    Mahmood A, Ahmad M, Sarfraz RM, Minhas MU, Yaqoob A. Formulation and In Vitro Evaluation of Acyclovir Loaded Polymeric Microparticles: A Solubility Enhancement Study. Acta Pol Pharm. 2016;73(5):1311–24.
46.    Masuda T, Yoshihashi Y, Yonemochi E, Fujii K, Uekusa H, Terada K. Cocrystallization and amorphization induced by drug–excipient interaction improves the physical properties of acyclovir. Int J Pharm. 2012;422(1–2):160–9.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available