Author(s): Satuluri Vineela, Santh Rani Thakur


DOI: 10.5958/0974-360X.2020.01048.3   

Address: Satuluri Vineela1*, Santh Rani Thakur2
1Assistant Professor, Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Chowdavaram, Guntur, Andhra Pradesh, India- 522019.
2Division of Pharmacology, Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, India- 517 502.
*Corresponding Author

Published In:   Volume - 13,      Issue - 12,     Year - 2020

Aim and Objective: In this study, we examined the possible protective effect of sinapic acid (SA) on acrylamide (ACR) induced neurotoxicity in both in-vitro and in-vivo models. Methods: U87MG cells were exposed to different concentrations of sinapic acid. After 24 hours, ACR was added to the cells and cell viability was measured through MTT assay. In in-vivo study, acrylamide administration (50 mg/kg bw, i.p. 3 times/ week) for 4 weeks produced typical symptoms of neuropathy in rats. Rats were subjected to behavioral tests each week. Finally, after assessing behavior rats were sacrificed under light ether anesthesia and the excised SN was processed for biochemical analysis. Results: SA (30 mg/kg, for 4 weeks) significantly improved in neurological score and responses in a battery of behavioral tests. Sinapic acid markedly attenuated ACR-induced markers of oxidative stress viz., malondialdehyde (MDA) and improved the reduced glutathione (GSH) and superoxide dismutase (SOD) in sciatic nerve (SN). ACR reduced the cell viability in a concentration-dependent manner. Sinapic acid reversed ACR induced cytotoxicity. Conclusion: Our ?ndings suggest the propensity of SA to attenuate ACR-induced neuropathy by attenuating oxidative stress.

Cite this article:
Satuluri Vineela, Santh Rani Thakur. Sinapic acid ameliorates Acrylamide induced Neurotoxicity through inhibition of oxidative stress in rats. Research J. Pharm. and Tech. 2020; 13(12):6009-6016. doi: 10.5958/0974-360X.2020.01048.3

Satuluri Vineela, Santh Rani Thakur. Sinapic acid ameliorates Acrylamide induced Neurotoxicity through inhibition of oxidative stress in rats. Research J. Pharm. and Tech. 2020; 13(12):6009-6016. doi: 10.5958/0974-360X.2020.01048.3   Available on:

1.    Vineela S., Vijetha P., S. Vidyadhara, B. Sowjanya Lakshmi and Y. Sailaja Ameliorative Effects of Alcoholic Seed Extract of Adenanthera Pavonina in Sciatic Nerve Transection induced Neuropathy In Rats, World Journal Of Pharmacy And Pharmaceutical Sciences, 2017, 6(10): 1161-1174.
2.    Sweety Trivedi, Alak Pandit, Goutam Ganguly, Shyamal Kumar Das, Epidemiology of Peripheral Neuropathy: An Indian Perspective, Annals of Indian Academy of Neurology, 2017, 20(3): 173-184.
3.    Mehri S, Meshki MA and Hosseinzadeh H. Linalool as a neuroprotective agent against acrylamide-induced neurotoxicity in Wistar rats. Drug Chem Toxicol. 2015, 38(2): 162-6.
4.    Ahmed HH, Elmegeed GA, el-Sayed el SM, Potent neuroprotective role of novel melatonin derivatives for management of central neuropathy induced by acrylamide in rats. European Journal of Medicinal Chemistry. 2010, 45: 5452–5459.
5.    Ling B, Authier N, Balayssac D Eschalier, A. and Coudore, F. Assessment of nociception in acrylamide-induced neuropathy in rats. Pain. 2005, 119: 104–112.
6.    Hammersla M and Kapustin Jf. Peripheral Neuropathy: Evidence-Based Treatment of a Complex Disorder. Nurse Pract 2012, 37: 32-39.
7.    Vanitha, S., Thiagarajan, V.R.K., Muthuraman, A., Krishnan, S., Aruna, A., Tharabai, R. Pharmacological evaluation of methanolic leaf extract of Swietenia mahagoni on acrylamide-induced neuropathic pain in rats. Toxicol. Ind. Health. 2012, 1–10, doi: 10.1177/ 0748233713491808.
8.    A.B. Kathryn, S. da silva, A.F. Paszcuk,G.F. Passos, S.E.silva, A.F.Bento, F.c Meotti, J.B. Calixto, Activation of cannabinoid receptors by the pentacyclic triterpene β-amyrin inhibits inflammatory and neuropathic persistent pain in mice, pain. 2011, 152: 1872-1887.
9.    A.I. Klaukea, I.Racza, B. Pradiera, A.Markert, A.M.Zimmer, j. Gertsch, A. Zimmer, The cannabinoid CB2 receptor-selective phytocannabinoid beta- caryophyllene exerts analgesic effects in mouse models of inflammatory and Neuropathic pain, Eur.Neuropsychopharmacol. 2014, 24: 608-620.
10.    B. Costa, A.E. Anna Elisa Trovato, F.Comelli,G. Giagnoni, M. Colleoni, The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain, Eur.J.pharmacol. 2007, 556: 75-83.
11.    A.E. Valsecchi, S.Franchi, A.E. Panerai, P.Sacerdote, A.E. Trovato, M. Colleoni,Genistein a natural phytoestrogen from soy, relieves neuropathic pain following chronic constriction sciatic injury in mice:anti-inflammatory and antioxidant activity, J. Neurochem. 2008, 107: 230-240.
12.    M.Aswar, P.Kute, S.Mahajan, U. Mahajan, G. Nerurkar, U. Aswar, Protective effect of hesperetin in rat model of patial, sciatic nerve lijation induced painful neuropathic pain:an evidence of anti-inflammatory and antioxidative activity, phamacol. Biochem.behave. 2010, 124: 101-107.
13.    O.M. Abo-Salem, Kaempferol attenuates the development of diabetic neuropathic pain in mice: possible anti-inflammatory and antioxidant mechanisms, Maced. J.Med.Sci. 2014, 7(3): 424-430.
14.    S.Ou, Y. Zhao, Z.Xiao, H. Wen, J.Cui, H.Ruan, Effect of lappaconitine on neuropathic pain mediated by P2X3 receptor in rat dorsal root ganglion, neurochem. Int. 2011, 58: 564-573.
15.    L.Berliocchi, R. Russo, A. Levato, B. Fratto, G.Bagetti, S. Sakurada, T. Sakurada, N.B. Mercury, M.T. Corasaniti, (-)-linalool attenuates allodynia in neuropathic pain induced by spinal nerve ligesation in C57/BL6 Mice, Int. Rev. Neurobiol. 2009, 85: 221-235.
16.    L. Chen, W. Chen, X.Qian, Y. Yun Fang, N.Zhu, Liquiritigenin alleviates mechanical and cold hyperalgesia in a rat neuropathic pain model, Sci.Rep. 2014, 4: 5676-5680.
17.    K.Hara, Y.Haranishi, T.Terada,Y. Takahashi, M. Nakamura, T.Sata, Effects of intratecal and intracerebroventricular administration of luteolin in a rat neuropathic pain model, Pharmacol. Biochem. Behave. 2014, 125: 78-84.
18.    B.B. Garrido-Suarez, G.Garrido, M.Castro-Labrada, N.Merino, O. Valdes, I.Rodeiro, I.Hrnandez, J.Godoy-Figueiredo, S.H.Ferreira, ReneDelgado-Hernandez, Anti-hypernociceptive effect of mangiferin in persistent and neuropathic pain models in rats, Pharmacol. Biochem. Biohave. 2014, 124: 311-319.
19.    A.D. Kandhare, K.S. Raygude, P.Ghosh, A.E. Ghule, S.L. Bodhankar, Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy, Fitoterapia 2012, 83: 650-659.
20.    M.I.Azevedo, A.F.Pereira, R.B. Nogueira, F.E.Rolim, G.A.C.Brito, D.V.T.Wong, R.C.P.Lima-Juinor, R.A.Ribeiro, M.L. Vale, The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced choronic painful peripheral neuropathy,Mol. Pain. 2013, 9: 53.
21.    Lavanya Yaidikar, Swapna Pokkula, Prathap Naik, Santhrani Thakur, M Niranjan Babu, “Papain, an active constituent of Carica Papaya ameliorates neuropathic pain in rats subjected to sciatic nerve ligation by mitigating oxidative damage and excitotoxicity". Acta Scientific Neurology, 2019, 2(7): 02-10.
22.    M. Anjaneyulu, K.Chopra, Qaurcetin a bioflavanoid attenuates a thermal hyperalgesia in a mouse model of neuropathic pain. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2003, 27: 1001-1005.
23.    L.C.Mannelli, M.Zanardelli. P. F.Alli, C.Ghelardini, Oxaliplatin-Induced neuropathy: oxidative stress as pathological mechanism, protective effect of silibinin, J. Pain. 2012, 13: 276-284.
24.    W.Haiyan, L.Yuxiang, D.Linglu, X. Yaqiong, J.Shaojb, D.Juan, M.Lin,L.Juan,Z.Ru,H.Xiaoliang, S.Tao, Y.Jianqiang, Antiociceptive effects of oxymatrine from Sophora flavesens, through regulation of NR2B-containing NMDA receptor –ERK/CREB signalling in a mice model of neuropathic pain, phytomedicine. 2013, 20: 1039-1045.
25.    J.Hu, C.Li, Y.Wang, Intrathecal administration of triptolide a T lymphocyte inhibitor, attenuates chronic constriction injury-induced neuropathic pain in rats, Brain Res. 2012, 1436: 122-129.
26.    B. Isacchi, R.Iacoti, M.C.Bergonzi, C.Ghelardini, M.Galeotti, M.Norcini, E.Vivoli, F.F.Vincieri, A.R.Bilia, Antihyperalgesic activity of verbascoside in two models of neuropathic pain, J.Pharma pharmacol. 2011, 63: 594-601.
27.    V.R.K. Thiagarajan, P.Shanmugam, U.Krishnan, A.Mand Muthuraman, Ameliorative potential of Vernonia cinerea on chronic constriction injury of sciatic nerve induced neuropathic pain in rats, An. Acad. Bras. Cienc. 2014, 86(3): 1435-1449.
28.    M.F. Andreasen, A.-K. Landbo, L.P. Christensen, Å. Hansen and A.S. Meyer, Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. Journal of Agricultural and Food Chemistry. 2001; 49: 4090-4096.
29.    Y. Zou, A. R. Kim, J. E. Kim, J. S. Choi, and H. Y. Chung, “Peroxynitrite scavenging activity of sinapicacid (3,5-dimethoxy 4-hydroxy cinnamic acid) isolated from Brassica juncea, ”Journal of Agricultural and Food Chemistry, 2002, 50(21): 5884–5890.
30.    Jones, B.J and Roberts, D.J. The quantitative measurement of motor incoordination in naive mice using an accelerating rotarod. The Journal of Pharmacy and Pharmacology. 1968, 20: 302–304.
31.    Sandhir R, Mehrotra A and Kamboj SS. Lycopene prevents 3-nitropropionic acid induced mitochondrial oxidative stress and dysfunctions in nervous system. Neurochem Int. 2010; 57: 579–587.
32.    Misra, H.P and Fridovich, J. The role of Superoxide anion in the auto oxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem. 1972, 247: 3170-3175.
33.     Ohkawa, H., Ohishi, N and Yagi, K. Assay for lipid peroxides in animals and tissue by thiobarbituric acid reaction. Analatical Biochemistry 1979, 95: 351-358.
34.    Moron, M.S., Depierre, J.W., and Mannervik, B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta, 1979, 582: 67–78.
35.    Lorentz, K. Improved determination of serum calcium with Orthocresolpthalein complexone. Clin. Chem. Acta 1982, 126: 327-333.
36.    LoPachin RM. Acrylamide neurotoxicity: neurological, morphological and molecular endpoints in animal models. Adv Exp Med Biol. 2005, 561: 21-37.
37.    Esmaeelpanah E, Rahmatkhah A, Poormahmood N, Razavi BM, Hasani F and Hosseinzadeh H. Protective Effect of Green Tea Aqueous Extract on Acrylamide Induced Neurotoxicity. Jundishapur J Nat Pharm Prod, 2015, 10(2): 1525-6014.
38.    Naziroglu M, Dikici DM and Dursun S. Role of Oxidative Stress and Ca2? Signaling on Molecular Pathways of Neuropathic Pain in Diabetes: focus on TRP Channels. Neurochem Res 2012, 37: 2065–2075.
39.    Tomoyuki Sumizawa and Hideki Igisu. Apoptosis induced by acrylamide in SH-SY5Y cells, Arch Toxicol, 2007, 81: 279–282.
40.    Motamedshariaty VS, Amel Farzad S, Nassiri - Asl M and Hosseinzadeh H. Effects of rutin on acrylamide-induced neurotoxicity. Daru Journal of Pharm Sci. 2014, 22(1): 27.
41.    Mehri S, Abnous K, Mousavi SH, Shariaty VM and Hosseinzadeh H. Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol. 2012, 32(2): 227-35.
42.    Chen JH, Wu KY, Chiu IM, Tsou TC and Chou CC. Acrylamide-induced astrogliotic and apoptotic responses in human astrocytoma cells. Toxicol in vitro. 2009, 23(5): 855-61.
43.    Jong-Hang Chen, Cheng-Hsien Yang, Yan-Shiu Wang, Jiann-Gwu Lee, Chiung-Hsiang Cheng, Chin-Cheng Chou, Acrylamide-induced mitochondria collapse and apoptosis in human astrocytoma cells Food and Chemical Toxicology. 2013, 51: 446–452.
44.    Xiaoqi Pan and Dandan Yan and Dun Wang and Xu Wu and Wanyun Zhao and Qing Lu and Hong Yan Mitochondrion-Mediated Apoptosis Induced by Acrylamide is Regulated by a Balance Between Nrf2 Antioxidant and MAPK Signaling Pathways in PC12 Cells Mol Neurobiol. In press.
45.    Rodrigo R, Libuy M, Feliu F, Hasson D. Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Dis Markers, 2013, 35: 773–790.
46.    Carriedo sg, sensi sl, yin hz and weiss jh. AMPA exposures induce mitochondrial Ca (2+) overload and ROS generation in spinal motor neurons in vitro. J Neuro sci, 2000, 20: 240-250.
47.    Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr 2004, 134: 489-492.
48.    Arunachalam Muthuraman, Nirmal Singh, Amteshwar S. Jaggi Effect of hydroalcoholic extract of Acorus calamus on tibial and sural nerve transection-induced painful neuropathy in rats J Nat Med, 2011, 65: 282–292.
49.    Arunachalam Muthuraman and Nirmal Singh Attenuating effect of hydroalcoholic extract of Acorus calamus in vincristine-induced painful neuropathy in rats J Nat Med, 2011, 65: 480–487.
50.    Hasandeep Singh, Rohit Arora, Saroj Arora and Balbir Singh. Ameliorative potential of Alstonia scholaris (Linn.) R. Br. against chronic constriction injury-induced neuropathic pain in rats, BMC Complementary and Alternative Medicine, 2017, 17(1): 1-9.
51.    Zhu YJ, Zeng T, Zhu YB, Yu SF, Wang QS, Zhang LP, Guo X and Xie KQ. Effects of acrylamide on the nervous tissue antioxidant system and sciatic nerve electrophysiology in the rat. Neurochem Res, 2008, 33: 2310–2317.
52.    Damodaran Lakshmi Kulasekaran Gopinath Govindaraj Jayanthy Shazia Anjum Dharmalingam Prakash Ganapasam Sudhandiran Ameliorating Effect of Fish Oil on Acrylamide Induced Oxidative Stress and Neuronal Apoptosis in Cerebral Cortex, Neurochem Res, 2012, 37: 1859–1867.
53.    Kalaimathi Janakiraman, Suresh kathiresan and Arokia Vijaya Anand Mariadoss. Influence of sinapic acid on induction of apoptosis in human laryngeal carcinoma cell line. Int. J. Modn. Res. Revs 2014, 2(5): 165-170.
54.    Ansari Mushtaq Ahmad, Raish Mohammad, Ahmad Ajaz, Ahmad Sheikh Fayaz, Mudassar Shahid, Mohsin Kazi, Shakeel Faiyaz, Korashy Hesham M., Bakheet Saleh A., Sinapic acid mitigates gentamicin-induced nephrotoxicity and associated oxidative/nitrosative stress, apoptosis, and inflammation in rats, Life Sciences, 2016, 165: 1-8.
55.    L. Pari, A. Mohamed Jalaludeen. Protective role of sinapic acid against arsenic – induced toxicity in rats. Chemico- Biological Interactions 2011, 194: 40-47.
56.    Dong Hyun Kim, Byung Hoon Yoon, Won Yong Jung, Jong Min Kim, Se Jin Park, Dong Hyun Park, Youngbuhm Huh, Chan Park, Jae Hoon Cheong, Kyung Tae Lee, Chan Young Shin and Jong Bhyun Ryu. Sinapic acid attenuates kainic acid induced hippocampal neuronal damage in mice. Neuropharmacology 2010, 59: 20-30.
57.    Hyung Eun Lee, Dong Hyun Kim, Se Jin Park, Jong Min Kim, Young Woo Lee, Jun Man Jung ,Chang Hwan Lee, Jin Gyu Hong, Xiaotong Liu, Mudan Cai, Keon Ju Park, Dae Sik Jang, Jong Hoon Ryu. Neuroprotective effect of sinapic acid in a mouse model of amyloid β1–42 protein-induced Alzheimer's disease, Pharmacology, Biochemistry and Behavior, 2012, 103: 260–26.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available