ABSTRACT:
Psoriasis common chronic autoimmune systemic inflammatory skin disease. It mostly occurs on the skin of the knees, intergluteal cleft, lumbosacral areas, scalp, gland penis, and elbows. Psoriasis characterized by plaques of thick, scaling skin. The rapid proliferation of skin cells which is caused by the pro-inflammatory agents that are produced by T-lymphocytes results in the formation of dry flakes of skin scales. Potential biomarker such as Western blotting, bioplex assay, immunohistochemistry, ELISA used to identify the disease status. Psoriasis affecting two percent in the world. The pathophysiology of disease activated or sensitized T-lymphocytes infiltrate the skin involving also dermal CD4+ TH1 cells and CD8+ T cells that build up in the epidermis and dermis which chronicle to keratinocytes hyper-proliferation. Previously available medicines like emollients and some keratolytic medicines haven’t a favorable role in control burn. But advance treatment like coal tar, methotrexate, retinoid, and cyclosporine is good effect proved from mild to severe psoriasis. Phototherapy treatment currently uses to the emerged situation. In this review reported to psoriasis in-vitro, in-vivo models and treatments.
Cite this article:
Sumithra. M, Mohamed Majeed. A, Chitra. V. Cell Lines and Animal Models of Psoriasis. Research J. Pharm. and Tech 2020; 13(3):1601-1608. doi: 10.5958/0974-360X.2020.00290.5
Cite(Electronic):
Sumithra. M, Mohamed Majeed. A, Chitra. V. Cell Lines and Animal Models of Psoriasis. Research J. Pharm. and Tech 2020; 13(3):1601-1608. doi: 10.5958/0974-360X.2020.00290.5 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-3-95
REFERENCES:
1. Eric J Yang, Kristen M Beck and John Koo1. Neuromodulation in Psoriasis and Psoriatic Arthritis. Annals of Chronic Diseases. 2018; 2(1): 1003.
2. Vijayalakshmi. A, Pushadapu Srinivas , Middhi. N. Vinodh, Abdul Gaffur , Updesh Kumar Singh. Antimicrobial activity of Antipsoriatic Plant Givotia rottleriformis Griff. Ex Wight. Research Journal of Pharmacy and Technology.
3. Abhijeet Kulkarni, Akash Autade, Deorao Awari , Sohan Chitlange: Pharmacological Evaluation of Anti-Psoriatic Activity of Madhuca longfolia on Experimental Animals. 2017; Vol. 8 (2): 218-235
4. Parisi R, Symmons DP, Griffiths CE, Ashcroft DM. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. Journal of Investigative Dermatology. 2013; 133(2):377-85.
5. Rachakonda TD, Schupp CW, Armstrong AW. Psoriasis prevalence among adults in the United States. Journal of the American Academy of Dermatology. 2014; 70:512-6.
6. Dogra, S., & Yadav, S. (2010). Psoriasis in India: Prevalence and pattern. Indian Journal of Dermatology, Venereology, and Leprology, 76(6), 595.
7. Christophers, E. (2001). Psoriasis - epidemiology and clinical spectrum. Clinical and Experimental Dermatology, 26(4), 314–320.
8. Gupta MA, Schork NJ, Gupta AK, Kirkby S, Ellis CN. Suicidal ideation in psoriasis. International Journal of Dermatology. 1993; 32(3):188-90.
9. Kurd SK, Troxel AB, Crits-Christoph P, Gelfand JM. The risk of depression, anxiety, and suicidality in patients with psoriasis: A population-based cohort study. Arch Dermatol. 2010; 146(8):891-5.
10. Dowlatshahi EA, Wakkee M, Arends LR, Nijsten T. The prevalence and odds of depressive symptoms and clinical depression in psoriasis patients: A systematic review and meta-analysis. Journal of Investigative Dermatology. 2014; 134(6):1542-51.
11. Mehta NN, Azfar RS, Shin DB, Neimann AL, Troxel AB, Gelfand JM. Patients with severe psoriasis are at increased risk of cardiovascular mortality: Cohort study using the General Practice Research Database. European Heart Journal. 2010; 31(8):1000-6.
12. Gelfand JM, Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB. Risk of myocardial infarction in patients with psoriasis. JAMA. 2006; 296(14):1735-41.
13. Rapp SR, Feldman SR, Exum ML, Fleischer AB, Reboussin DM. Psoriasis causes as much disability as other major medical diseases. Journal of the American Academy of Dermatology. 1999; 41(3):401-7.
14. Gelfand JM, Troxel AB, Lewis JD, Kurd SK, Shin DB, Wang X, et al. The risk of mortality in patients with psoriasis: Results from a population-based study. Arch Dermatol. 2007; 143(12):1493-9.
15. Villani AP, Rouzaud M, Sevrain M, Barnetche T, Paul C, Richard MA, et al. Prevalence of undiagnosed psoriatic arthritis among psoriasis patients: Systematic review and meta-analysis. Journal of the American Academy of Dermatology. 2015;73(2):242-8.
16. Koca TT. A short summary of clinical types of psoriasis. North Clin Istanbul. 2016;3(1):79–82.
17. Gary D Hammer, Stephen J McPhee. Pathophysiology of Disease An Introduction to Clinical Medicine, edited by Stephen J. McPhee and McPhee, MD McGraw-Hill, New York. 1996:7thed.
18. Rahamat Unissa, P. Mahesh Kumar, Gella Sunil. Psoriasis: A Comprehensive Review. . Asian journal of Research in pharmaceutical science. 2019; 9(1):29-38.
19. Deepak H B, Sabina Evan Prince. A Systematic Review on the Role of PD-1 and its Ligands in Autoimmunity. Research Journal of Pharmacy and Technology.2017; 10(8): 2771-2776
20. Kumar V, Robbins SI, Cotran R.S, Basic Pathology, Edited by Robbins, Philadelphia, Saunders. 2007, 8th ed: p. 840-844.
21. Tanaji D. Nandgude, Priyajit S. Hasabe, Anuja K. Kolsure. Clinical Features and Treatment of Rheumatoid Arthritis: A Review. Research Journal of Pharmacy and Technology. 2018; 11(12): 5701-5706.
22. Rasha H. Al-Rikabi, Hanady S. Al-Shmgani. Evaluation of Hesperidin Protective Effect on Lipopolysaccharide -Induced Inflammation and Lipid Peroxidation in BALB/c male mice. Research Journal of Pharmacy and Technology. 2018; 11(12): 5369-5372.
23. Mariam Mahmoud Taha, Zainab Thamer Shwait Al-Asady. Evaluation of the effectiveness of Antioxidants and TNF-α in Iraqi Patients with Psoriasis treated with Etanercept. Research Journal of Pharmacy and Technology. 2019; 12(2):665-668.
24. Nograles KE, Zaba LC, Guttman-Yassky E, Fuentes-Duculan J, Suarez-Farifias M, Cardinale I. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response Pathways.Br J Dermatol. 2008; 159 (5):1092-102.
25. Rocha‐Pereira P, Santos‐Silva A, Rebelo I, Figueiredo A, Quintanilha A, Teixeira F. The inflammatory response in mild and in severe psoriasis. Br J Dermatol 2004; 150:917–28.
26. Garbaraviciene J, Diehl S, Varwig D, Bylaite M, Ackermann H, Ludwig RJ, et al. Platelet Pselectin reflects a state of cutaneous inflammation: possible application to monitor treatment efficacy in psoriasis. Exp Dermatol 2010; 19:736–41.
27. Villanova F, Di Meglio P, Nestle FO. Biomarkers in psoriasis and psoriatic arthritis. Ann Rheum Dis 2013; 72:ii104–10.
28. Karankumar V. Biradar and Amit Pawar. Corticosteroids and way of inflammation. Research Journal of Pharmacy and Technology.2018; 11(13) 5369-5372.
29. P. Rocha-Pereira, A. Santos-Silva, I. Rebelo, A. Figueiredo, A. Quintanilha, and F. Teixeira, “The inflammatory response in mild and in severe psoriasis,” British Journal of Dermatology, vol. 150, no. 5, pp. 917–928, 2004.
30. S. Coimbra, H. Oliveira, F. Reis et al., “C-Reactive protein and leucocyte activation in psoriasis vulgaris according to severity and therapy,” Journal of the European Academy of Dermatology and Venereology, vol. 24, no. 7, pp. 789–796, 2010.
31. J. Garbaraviciene, S. Diehl, D. Varwig et al., “Platelet P-selectin reflects a state of cutaneous inflammation: possible application to monitor treatment efficacy in psoriasis,” Experimental Dermatology, vol. 19, no. 8, pp. 736–741, 2010.
32. I. Flisiak, P. Zaniewski, M. Rogalska-Taranta, and B. Chodynicka, “Effect of psoriasis therapy on VEGF and its soluble receptors serum concentrations,” Journal of the European Academy of Dermatology and Venereology, vol. 26, no. 3, pp. 302–307, 2012.
33. H. Q. Chen, X. Li, and R. Tang, “Effects of narrow band ultraviolet B on serum levels of vascular endothelial growth factor and interleukin-8 in patients with psoriasis,” American Journal of Therapeutics, vol. 23, no. 3, pp. e655–e662, 2016.
34. A. R. Meki and H. Al-Shobaili, “Serum vascular endothelial growth factor, transforming growth factor β1, and nitric oxide levels in patients with psoriasis vulgaris: their correlation to disease severity,” Journal of Clinical Laboratory Analysis, vol. 28, no. 6, pp. 496–501, 2014.
35. I. Flisiak, B. Chodynicka, P. Porebski, and R. Flisiak, “Association between psoriasis severity and transforming growth factor β1 and β2 in plasma and scales from psoriatic lesions,” Cytokine, vol. 19, no. 3, pp. 121–125, 2002.
36. I. Flisiak, P. Porębski, R. Flisiak, and B. Chodynicka, “Plasma transforming growth factor β1 as a biomarker of psoriasisactivity and treatment efficacy,” Biomarkers, vol. 8, no. 5, pp. 437–443, 2003.
37. H. Zaher, O. G. Shaker, M. H. EL-Komy, A. El-Tawdi, M. Fawzi, and D. Kadry, “Serum and tissue expression of transforming growth factor beta 1 in psoriasis,” Journal of the European Academy of Dermatology and Venereology, vol. 23, no. 4, pp. 406–409, 2009.
38. I. Flisiak, P. Zaniewski, and B. Chodynicka, “Plasma TGF-β1, TIMP-1, MMP-1 and IL-18 as a combined biomarker of psoriasis activity,” Biomarkers, vol. 13, no. 5, pp. 549–556, 2008.
39. T. Jin, Z. Sun, X. Chen et al., “Serum human beta-defensin-2 is a possible biomarker for monitoring response to JAK inhibitor in psoriasis patients,” Dermatology, vol. 233, no. 2–3, pp. 164–169, 2017.
40. P. A. Jansen, D. Rodijk-Olthuis, E. J. Hollox et al., “β-Defensin-2 protein is a serum biomarker for disease activity in psoriasis and reaches biologically relevant concentrations in lesional skin,” PLoS One, vol. 4, no. 3, article e4725, 2009.
41. S. Benoit, A. Toksoy, M. Ahlmann et al., “Elevated serum levels of calcium-binding S100 proteins A8 and A9 reflect disease activity and abnormal differentiation of keratinocytesin psoriasis,” British Journal of Dermatology, vol. 155, no. 1, pp. 62–66, 2006.
42. D. Wilsmann-Theis, J. Wagenpfeil, D. Holzinger et al., “Among the S100 proteins, S100A12 is the most significant marker for psoriasis disease activity,” Journal of the European Academy of Dermatology and Venereology, vol. 30, no. 7, pp. 1165–1170, 2016.
43. O. Arican, M. Aral, S. Sasmaz, and P. Ciragil, “Serum levels of TNF-α, IFN-γ, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity,” Mediators of Inflammation, vol. 2005, no. 5, pp. 273–279, 2005.
44. A. Pietrzak, B. Lecewicz-Torun, G. Chodorowska, and J. Rolinski, “Interleukin-18 levels in the plasma of psoriatic patients correlate with the extent of skin lesions and the PASI score,” Acta Dermato-Venereologica, vol. 83, no. 4, pp. 262- 263, 2003.
45. I. Flisiak, A. Klepacki, and B. Chodynicka, “Plasma and scales levels of interleukin 18 in comparison with other possible clinical and laboratory biomarkers of psoriasis activity,” Biomarkers, vol. 11, no. 2, pp. 194–200, 2006.
46. N. Houshang, K. Reza, S. Masoud, E. Ali, R. Mansour, and A. Vaisi-Raygani, “Antioxidant status in patients with psoriasis,” Cell Biochemistry & Function, vol. 32, no. 3, pp. 268– 273, 2014.
47. A. Şikar Aktürk, H. K. Özdoğan, D. Bayramgürler, M. B. Çekmen, N. Bilen, and R. Kıran, “Nitric oxide and malondialdehyde levels in plasma and tissue of psoriasis patients,” Journal of the European Academy of Dermatology and Venereology, vol. 26, no. 7, pp. 833–837, 2012
48. S. Kagami, H. L. Rizzo, J. J. Lee, Y. Koguchi, and A. Blauvelt, “Circulating Th17, Th22, and Th1 cells are increased in psoriasis,” Journal of Investigative Dermatology, vol. 130, no. 5, pp. 1373–1383, 2010.
49. J. Bhawan, C. Bansal, K. Whren, and U. Schwertschlag, “K16 expression in uninvolved psoriatic skin: a possible marker of pre-clinical psoriasis,” Journal of Cutaneous Pathology, vol. 31, no. 7, pp. 471–476, 2004.
50. M. E. Franssen, J. B. Boezeman, P. C. van de Kerkhof, and P. E. van Erp, “Monitoring hyperproliferative disorders in human skin: flow cytometry of changing cytokeratin expression,” Cytometry Part B: Clinical Cytometry, vol. 57B, no. 1, pp. 32–39, 2004.
51. S. Jiang, T. E. Hinchliffe, and T. Wu, “Biomarkers of an autoimmune skin disease psoriasis,” Genomics, Proteomics & Bioinformatics, vol. 13, no. 4, pp. 224–233, 2015.
52. G. Lemaitre, V. Sivan, J. Lamartine et al., “Connexin 30, a new marker of hyperproliferative epidermis,” British Journal of Dermatology, vol. 155, no. 4, pp. 844–846, 2006.
53. T. Lucke, R. Choudhry, R. Thom, I. S. Selmer, A. D. Burden, and M. B. Hodgins, “Upregulation of connexin 26 is a feature of keratinocyte differentiation in hyperproliferative epidermis, vaginal epithelium, and buccal epithelium,” Journal of Investigative Dermatology, vol. 112, no. 3, pp. 354– 361, 1999.
54. M. Koçak, Ö. Bozdoǧan, E. Erkek, P. Atasoy, and A. Birol, “Examination of Bcl-2, Bcl-X and bax protein expression in psoriasis,” International Journal of Dermatology, vol. 42, no. 10, pp. 789–793, 2003.
55. A. Steptoe, M. Hamer, and Y. Chida, “The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis,” Brain, Behavior, and Immunity, vol. 21, no. 7, pp. 901–912, 2007.
56. M. Maes, C. Song, A. Lin et al., “The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and Th1-like response in stress-induced anxiety,” Cytokine, vol. 10, no. 4, pp. 313–318, 1998.
57. O. Arican, M. Aral, S. Sasmaz, and P. Ciragil, “Serum levels of TNF-α, IFN-γ, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity,” Mediators of Inflammation, vol. 2005, no. 5, pp. 273–279, 2005.
58. Barker, C. L., McHale, M. T., Gillies, A. K., Waller, J., Pearce, D. M., Osborne, J., Hutchinson. P. E., Smith, G. M., and Pringle, J. H. The development and characterization of an in vitro model of psoriasis. J Invest Dermatol, 2004; 123, 5, 892-901.
59. Chang C, Murzaku C.E, Penn L, Abbasi N.R, Davis D.P, Berwick M, Polsky, D. More Skin, More Sun, More Tan, More Melanoma. Am J Public Health 2014; 104(11): 92-99.
60. Schon M.P, Henning Boehncke W. Psoriasis: Medical Progress. N Engl J Med 2005; 352:18 99-1 91 2.
61. Walker R, Whittlesea C. Clinical Pharmacy and Therapeutics.4th Edition. New York: Churchill and Livingstone/Elsevier; 2007. p. 826-828.
62. Vikas Chaurasia, Saurabh Pal. Skin Diseases Prediction: Binary Classification Machine Learning and Multi Model Ensemble Techniques. Research Journal of Pharmacy and Technology. 2019; 12(8):3829-3832.
63. Schon, M. P. (2008). Animal models of psoriasis: a critical appraisal. Ex p Dermatol, 17, 8, 703-12.
64. Gudjonsson, J. E, Johnston, A., Dyson, M., Valdimarsson, H., and Elder, J.T. Mouse models of psoriasis. J Invest Dermatol, 2007; 127, 6, 1292-308.
65. Stratis, A. Pasparakis, M. Rupee, R. A. E Markus, D. Hartmann, K. Scharfetter-Kochanek, K. Peters, T. van Rooijen, N. Krieg, T. and Haase, I. Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation. J Clin Invest, 2006; 116, 8, 2094-104..
66. Kunstfeld, R. Hirakawa, S. Hong, Y. K. Schacht, V. Lange-Asschenfeldt, B.Velasco, P., Lin, C., Fiebiger, E. Wei, X. Wu, Y. Hicklin, D. Bohlen, P., Detmar, M. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood. 2004; 104, 4, 1048-57.
67. Danilenko, D. M. Review paper: preclinical models of psoriasis. Vet Pathol, 2008; 45, 4, 563-75.
68. Guo, L. Yu, Q. C. and Fuchs, E. Targeting expression of keratinocyte growth factor to keratinocytes elicits strilcing changes in epithelial differentiation in transgenic mice. Embo J, 1993; 12, 3, 973-86.
69. Li, A. G. Wang, D., Feng, X. H., and Wang, X. J. Latent TGFbetal over expression in keratinocytes results in a severe psoriasis-like skin disorder. Embo J 2004; 23, 8, 1770-81
70. Hansson, L. Backman, A. Ny, A. Edlund, M. Ekholm, E. Ekstrand Hammarstrom, B. Tomell, J. Wallbrandt, P. Wennbo, H. and Egelrud, T.Epidermal overexpression of stratum corneum chymotryptic enzyme in mice: a model for chronic itchy dermatitis. J Invest Dermatol 2002; 118, 3, 444.
71. Raychaudhuri, S. P. Dutt, S. Raychaudhuri, S. K. Sanyal, M. and Farber, E.M. Severe combined immunodeficiency mouse-human skin chimeras: a unique animal model for the study of psoriasis and cutaneous inflammation. Br J Dermatol, 2001; 144, 5,931-9.
72. Boyman, 0. Hefli, H. P. Conrad, C. Nickoloff, B. J. Suter, M. and Nestle, F. 0. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J Exp Med, 2004; 199, 5, 731-6.
73. Conrad, C. and Nestle, F. O. Animal models of psoriasis and psoriatic arthritis: an update. Curr Rheumatol Rep, 2006; 8, 5, 342-7.
74. Gilliet M,Conrad C, Geiger M, Cozzio A, Thurlimann W, Burg G, Nestle FO, Dummer R. Psoriasis triggered by Toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch Dermatol. 2004; 140, 1490-1495.
75. Van der fits L, Mounts S, Voerman JS, Kant M, Boon L, Lam JD, Comelissen F, Mus AM, Florencia E, Prens EP, Lubberts E. Imiquimod-Induced Psoriasis- Like S kin Inflammation in Mice Is Mediated via the IL-23/IL-17 Axis. J Immunol. 2009; 182(9): 5836-45.
76. H. Nakaguma, T. Kambara, T. Yamamoto, Rat ultraviolet ray B photodermatitis: an experimental model of psoriasis vulgaris, Intern. J. Exp. Pathol; 2009; 76 (1995) 65-71.
77. Salunke Pradnya Balasaheb, Patil Sandeep Balvant, Kadam A.T. Antipsoriatic Activity of gel containing Methylsulphonylmethane Powder and seed oil of Pongamia pinnata Linn. . Research Journal of Pharmacy and Technology.2018. (9)2321-5836.
78. Oyejedi O.S, Bankole-Ojo O.S, Quantitative evaluation of anti-psoriatic activity of sausage tree. Africans Applied Journal of Pure and Applied Chemistry. 2012 6(13):214-218.
79. Kimball AB, Gladman D, Gelfand JM, Gordon K, Horn EJ, Korman N.J. National Psoriasis Foundation clinical consensus on psoriasis comorbidities and recommendations for screening. Journal of the American Academy of Dermatology. 2008; 58 (6):1031-1042.
80. Archana R. Dhole, Giraja G. Shendage, Shardha Pethkar, C.S. Magdum, S.K. Mohite. Drug used in Inflammatory Bowel Disease (IBD) - Brief Review. Research Journal of Pharmacy and Technology.2014. (6) 2321-5836
81. Golan E.D, Tashjian H.A. Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy. Wolters Kluwer Health/Lippincott Williams & Wilkins. Philadelphia .2012; 3rd ed. p. 668.
82. Lowes, M A., Bowcock, A.M and Krueger, J.G. (2007) Pathogenesis and Therapy of Psoriasis.Nature. 2007; 445(7130):866-873.
83. Grant WB, Holick MF. Benefits and Requirements of Vitamin D for Optimal Health: A Review. Alternative Medicine Review. 2005; 10:94-111.
84. Buccheri L, Katchen BR, Karter AJ, Cohen SR. Acitretin Therapy is Effective for Psoriasis Associated with Human Immunodeficiency Virus Infection. Archives of Dermatology. 1997; 133:711-5.
85. Walter JF, Stoughton RB, Dequoy PR. Suppression of Epidermal Proliferation by Ultraviolet Light, Coal tar and Anthralin. British Journal of Dermatology. 1978; 99:89-96.
86. Schmitt J, Rosumeck S, Thomaschewski G, Sporbeck B, Haufe E, Nast A. Efficacy and Safety of Systemic Treatments for Moderate-to-Severe Psoriasis: Meta-analysis of Randomized Controlled Trials. British Journal of Dermatology. 2014; 170:274-303.
87. Michael k. Burns, MD; Charles N. Ellis, MD;Drore Eisen, et al. cyclosporine improves psoriasis in a double-blind study. JAMA [internet]. 1986; 256(22):3110-6.Available from: http://www.epistemonikos.org/documents/38cf2baa62d6ef0de46cb6c85f01b04238d63e5a.
88. Sivamani R.K , CorreaG, Ono Y, Bowen M.P, Raychaudhuri S.P, Maverakis E . Biological therapy of psoriasis. Indian Journal of Dermatology.2010; 55 (2):161-70.
89. DiPiro J.T, Talbert R.L, Yee G.C, Posey M.L. Pharmacotherapy: A Pathophysiologic approach. Edited by McGraw Hill Education. New York.2014; 9th ed: Page 3473-3476.
90. Müller, K., & Ziereis, K. (1994). The Antipsoriatic Mahonia aquifolium and its Active Constituents; I. Pro- and Antioxidant Properties and Inhibition of 5-Lipoxygenase. Planta Medica, 60(05), 421–424.
91. Cheng, H.-M., Wu, Y.-C., Wang, Q., Song, M., Wu, J., Chen, D., Chris Huang, C. (2017). Clinical efficacy and IL-17 targeting mechanism of Indigo natural is as a topical agent in moderate psoriasis. BMC Complementary and Alternative Medicine, 17(1).
92. El-Gammal, A., Di Nardo, V., Daaboul, F., Tchernev, G., Wollina, U., Lotti, J., & Lotti, T. (2018). Is There a Place for Local Natural Treatment of Psoriasis? Open Access Macedonian Journal of Medical Sciences, 6.
93. Deng, S., May, B. H., Zhang, A. L., Lu, C., & Xue, C. C. L. (2013). Plant extracts for the topical management of psoriasis: a systematic review and meta-analysis. British Journal of Dermatology, 169(4), 769 782.