Author(s):
Narendra Kumar S, Muralidhara P L, Lingayya Hiremath, Swathi P R
Email(s):
narendraks@rvce.edu.in
DOI:
10.5958/0974-360X.2020.00356.X
Address:
Narendra Kumar S1, Muralidhara P L2, Lingayya Hiremath1, Swathi P R2
1Department of Biotechnology, RVCE, Bengaluru.
2Department of Chemical Engineering, RVCE, Bengaluru.
*Corresponding Author
Published In:
Volume - 13,
Issue - 4,
Year - 2020
ABSTRACT:
The Pharmaceutical Industry produces a wide variety of products in batch or semi-batch processes where the usage of water in many processing equipment plays an important role. The wastewater that is generated from these industries may contain pharmaceutical compounds that are let out in the aquatic environment. The characteristics of pharmaceutical wastewater are clearly mentioned. The wastewater generated in between the processes may contain many chemicals and pharmaceutical compounds that have to be treated. It is very much necessary to analyze the treatment technologies and implement properly, such that the pharmaceutical compounds are disposed of in safe limits. All the various treatments used are presented clearly in this review. Generally, one method employed will not lead to complete removal of contaminants; there must be a combination of the process for efficient removal.
Cite this article:
Narendra Kumar S, Muralidhara P L, Lingayya Hiremath, Swathi P R. A Recent Advancement on Treatment Technologies for Handling of Pharma Waste water. Research J. Pharm. and Tech. 2020; 13(4):1979-1984. doi: 10.5958/0974-360X.2020.00356.X
Cite(Electronic):
Narendra Kumar S, Muralidhara P L, Lingayya Hiremath, Swathi P R. A Recent Advancement on Treatment Technologies for Handling of Pharma Waste water. Research J. Pharm. and Tech. 2020; 13(4):1979-1984. doi: 10.5958/0974-360X.2020.00356.X Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-4-66
REFERENCE:
1. Addamo, M., Augugliaro, V., Di Paola, A., García-López, E., Loddo, V., Marcì, G., and Palmisano, L. (2005). Removal of drugs in aqueous systems by photoassisted degradation. Journal of Applied Electrochemistry, 35(7–8), 765–774. https://doi.org/10.1007/s10800-005-1630-y
2. Arslan-Alaton, I., and Akmehmet Balcioglu, I. (2002). Biodegradability assessment of ozonated raw and biotreated pharmaceutical wastewater. Archives of Environmental Contamination and Toxicology, 43(4), 425–431. https://doi.org/10.1007/s00244-002-1235-y
3. Aus der Beek, T., Weber, F.-A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., and Küster, A. (2016). Pharmaceuticals in the environment-Global occurrences and perspectives. Environmental Toxicology and Chemistry, 35 (4), 823–835. https://doi.org/10.1002/etc.3339
4. Badawy, M. I., and Wahaab, R. A. (2009). Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater. Journal of Hazardous Materials, 167, 567–574. https://doi.org/10.1016/j.jhazmat.2009.01.023
5. Belgiorno, V., Rizzo, L., Fatta, D., Della Rocca, C., Lofrano, G., Nikolaou, A., Meric, S. (2007). Review on endocrine disrupting-emerging compounds in urban wastewater: occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. Desalination, 215(1–3), 166–176. https://doi.org/10.1016/j.desal.2006.10.035
6. Chang, C., and Chang, J. (2008). Pharmaceutical wastewater treatment by membrane bioreactor process – a case study in southern Taiwan. Desalination, 234(1–3), 393–401. https://doi.org/10.1016/j.desal.2007.09.109
7. Chelliapan, S. (2014). Application of anaerobic biotechnology for pharmaceutical wastewater treatment. IIOAB Journal, 2(1), 13–21.
8. Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1), 11–41. https://doi.org/10.1016/j.seppur.2003.10.006
9. Chen, Z., Chen, Z., Wang, Y., Li, K., and Zhou, H. (2014). Effects of increasing organic loading rate on performance and microbial community shift of an up-flow anaerobic sludge blanket reactor treating diluted pharmaceutical wastewater Effects of increasing organic loading rate on performance and microbial commu. Journal of Bioscience and Bioengineering, 118(3), 284–288. https://doi.org/10.1016/j.jbiosc.2014.02.027
10. Claus, Gerhard, Oliver, and Dietrich. (1997). Oxidative degradation of AOX and COD by different advanced oxidation processes: a comparative study with two samples of a pharmaceutical wastewater. Water Science Technology, 35(4), 257–264.
11. Comninellis, C., Kapalka, A., Malato, S., Parsons, S. A., Poulios, I., and Mantzavinos, D. (2008). Advanced oxidation processes for water treatment: advances and trends for RandD. Journal of Chemical Technology and Biotechnology, 83(6), 769–776. https://doi.org/10.1002/jctb.1873
12. Debellefontaine, H., Noe, J., and Foussard, È. (2000). Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste Managemntaste Managemnt, 20, 15–25.
13. Deegan, A. M., Shaik, B., Nolan, K., Urell, K., Oelgemöller, M., Tobin, J., and Morrissey, A. (2011). Treatment options for wastewater effluents from pharmaceutical companies. International Journal of Environmental Science and Technology, 8(3), 649–666. https://doi.org/10.1007/BF03326250
14. Domínguez, J. R., González, T., Palo, P., Sánchez-Martín, J., Rodrigo, M. A., and Sáez, C. (2012). Electrochemical degradation of a real pharmaceutical effluent. Water, Air, and Soil Pollution, 223(5), 2685–2694. https://doi.org/10.1007/s11270-011-1059-3
15. Emery, R. J., Papadaki, M., Freitas Dos Santos, L. M., and Mantzavinos, D. (2005). Extent of sonochemical degradation and change of toxicity of a pharmaceutical precursor (triphenylphosphine oxide) in water as a function of treatment conditions. Environment International, 31(2), 207–211. https://doi.org/10.1016/j.envint.2004.09.017
16. Gadipelly, C., Pérez-González, A., Yadav, G. D., Ortiz, I., Ibáñez, R., Rathod, V. K., and Marathe, K. V. (2014). Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse. Industrial and Engineering Chemistry Research, 53(29), 11571–11592. https://doi.org/10.1021/ie501210j
17. Gaya, U. I., and Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003
18. Goel, J., Organisation, D., Kadirvelu, K., Organisation, D., and Garg, V. K. (2015). A Pilot Scale Evaluation for Adsorptive Removal of Lead (II) Using Treated Granular Activated Carbon. Environmetal Technology, 26(5), 489–500.
19. Gome, A., and Upadhyay, K. (2013). Biodegradability Assessment of Pharmaceutical Wastewater Treated by Ozone. Int. Res. J. Environment Sci., 2(4), 21–25.
20. Gotvajn, A. Ž., Zagorc-kon, J., and Tišler, T. (2007). Pretreatment of Highly Polluted Pharmaceutical Waste Broth by Wet Air Oxidation. Journal of Environmental Engineering, 133(1), 89–94.
21. Huber, M. M., Göbel, A., Joss, A., Hermann, N., Löffler, D., Mc Ardell, C. S., Von Gunten, U. (2005). Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: A pilot study. Environmental Science and Technology, 39(11), 4290–4299. https://doi.org/10.1021/es048396s
22. Imran, H. (2014). Wastewater Monitoring of Pharmaceutical Industry : Treatment and Reuse Options. Electron. J. Environ. Agric. Food Chem, 4(May), 994–1004.
23. Jallouli, N., Elghniji, K., Trabelsi, H., and Ksibi, M. (2015). Photocatalytic degradation of paracetamol on TiO 2 nanoparticles and TiO 2 / cellulosic fiber under UV and sunlight irradiation. Arabian Journal of Chemi, (January), 10–13. https://doi.org/10.1016/j.arabjc.2014.03.014
24. Joss, A., Keller, E., Alder, A. C., Go, A., Mcardell, C. S., Ternes, T., and Siegrist, H. (2005). Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Research, 39, 3139–3152. https://doi.org/10.1016/j.watres.2005.05.031
25. Kavitha, R. V, Murthy, V. K., Makam, R., and Asith, K. A. (2012). Physico-Chemical Analysis of Effluents from Pharmaceutical Industry and its Efficiency Study. International Journal of Engineering Research and Applications, 2(2), 103–110.
26. Klepiszewski, K., and Venditti, S. (2011). Elimination of pharmaceutical residues in hospital wastewater using low and medium pressure UV lamps. Proceedings of the 12th International Conference on Environmental Science and Technology, (8), 948–955.
27. Lapara, T. M., Konopka, A., Nakatsu, C. H., and Alleman, J. E. (2001). Thermophilic aerobic treatment of a synthetic wastewater in a membrane-coupled bioreactor. Journal of Industrial Microbiology and Biotechnology, 26, 203–209.
28. Larsen, T. A., Lienert, J., Joss, A., and Siegrist, H. (2004). How to avoid pharmaceuticals in the aquatic environment. Journal of Biotechnology, 113(1–3), 295–304. https://doi.org/10. 1016/j.jbiotec.2004.03.033
29. Madukasi, E. I., Dai, X., He, C., and Zhou, J. (2010). Potentials of phototrophic bacteria in treating pharmaceutical wastewater. International Journal of Environmental Science and Technology, 7(1), 165–174. https://doi.org/10.1007/BF03326128
30. Ng, K., Lin, A. Y., Yu, T., and Lin, C. (2011). Tertiary Treatment of Pharmaceuticals and Personal Care products by Pretreatment and Membrane Processes. Sustain. Environ. Res, 21(3), 173–180.
31. Nikolaou, A., Meric, S., and Fatta, D. (2007). Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem, 387, 1225–1234. https://doi.org/10.1007/s00216-006-1035-8
32. Print, I., Zamiraei, Z., Panahandeh, M., Fathidokht, H., and Arshad, N. (2015). The characterization and analysis of chemical contaminations of pharmaceutical industrial wastewater (case study: North of Iran). Journal of Biodiversity and Environmental Sciences, 6(3), 272–278.
33. Quan, X., Liu, Y., Guo, Z., and Shao, L. (2015). Nano filtration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics. Journal of Membrane Science, 493, 156–166. https://doi.org/10.1016/j.memsci.2015.06.048
34. Radjenovic, J., Petrovic, M., and Barceló, D. (2007). Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Analytical and Bioanalytical Chemistry, 387(4), 1365–1377. https://doi.org/10.1007/s00216-006-0883-6
35. Reyes, C., Fernández, J., Freer, J., Mondaca, M. A., Zaror, C., Malato, S., and Mansilla, H. D. (2006). Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 184(1–2), 141–146. https://doi.org/10.1016/j.jphotochem.2006.04.007
36. Rubinowska, K. (2013). TiO2 -assisted photocatalytic degradation of diclofenac, metoprolol, estrone and chloramphenicol as endocrine disruptors in water. Adsorption, (April). https://doi.org/10.1007/s10450-013-9485-8
37. Saleem, M. (2007). Pharmaceutical Watewater Treatment: A Physicochemical Study. Journal of Research, 18(2), 125–134.
38. Shinohara, H., Sato, N., Kiri, K., Nakada, N., Managaki, S., Takada, H., and Murata, A. (2007). Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research, 41(19), 4373–4382. https://doi.org/10.1016/j.watres.2007.06.038
39. Snyder, S. A., Adham, S., Redding, A. M., Cannon, F. S., Decarolis, J., Oppenheimer, J., Yoon, Y. (2007). Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination, 202, 156–181. https://doi.org/10.1016/j.desal.2005.12.052
40. Suri, R. P. S., Nayak, M., Devaiah, U., and Helmig, E. (2007). Ultrasound assisted destruction of estrogen hormones in aqueous solution: Effect of power density, power intensity and reactor configuration. Journal of Hazardous Materials, 146(3), 472–478. https://doi.org/10.1016/j.jhazmat.2007.04.072
41. Vuppala, N. V. S., Suneetha, C., and Saritha, V. (2005). Study on treatment process of effluent in Bulk drug industry. International Journal of Research in Pharmaceutical and Biomedical Sciences, 3(3), 1095–1102.
42. Zhou, F., Wang, C., and Wei, J. (2013). Separation of acetic acid from monosaccharides by NF and RO membranes: Performance comparison Separation of acetic acid from monosaccharides by NF and RO membranes: Performance comparison. Journal of Membrane Science, 429(December 2018), 243–251. https://doi.org/10.1016/j.memsci.2012.11.043
43. Żmudzki, P., Szczubiałka, K., Krzek, J., Nowakowska, M., Długosz, M., and Kwiecień, A. (2015). Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst. Journal of Hazardous Materials, 298, 146–153. https://doi.org/10.1016/j.jhazmat.2015.05.016