Author(s):
Y. E. Matiichuk, T. I. Chaban, V. V. Ogurtsov, I. G. Chaban, V. S. Matiychuk
Email(s):
v_matiychuk@ukr.net
DOI:
10.5958/0974-360X.2020.00653.8
Address:
Y. E. Matiichuk1, T. I. Chaban1, V. V. Ogurtsov1, I. G. Chaban2, V. S. Matiychuk3
1Department of General, Bioinorganic, Physical and Colloidal Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
2Department of Pharmaceutical Chemistry FPGE, Danylo Halytsky Lviv National Medical University,
69 Pekarska, Lviv, 79010, Ukraine
3Department of Organic Chemistry, Ivan Franko National University of Lviv, 6 Kyrylaі Mefodia,
Lviv, 79005, Ukraine
*Corresponding Author
Published In:
Volume - 13,
Issue - 8,
Year - 2020
ABSTRACT:
The synthesis and antitumor activity determination of some novel 2-(1H-benzoimidazol-2-yland 2-benzothiazol-2-yl)-3-(5-phenylfuran-2-yl)-acrylonitrilesderivatives are described. By the reaction of 5–arylfurfurals with 1H-benzimidazol-2-yl) acetonitrile, benzthiazol-2-ylacetonitrile and (4-arylthiazol-2-yl)-acetonitrile were synthesed 3-(5-arylfuran-2-yl)acrylonitrile derivatives. The structure of synthesized compounds was confirmed by elemental analysis and 1H NMR spectroscopy. Within the framework of the International Research Program DTP (Developmental Therapeutic Program) of the National Cancer Institute's (NCI, Betezda, Merilend, USA) antitumor activity screening of synthesized compounds was carried out. It was established that these compounds are promising to search as anti-cancer agents.
Cite this article:
Y. E. Matiichuk, T. I. Chaban, V. V. Ogurtsov, I. G. Chaban, V. S. Matiychuk. Antitumor Properties of Novel 2-(1H-Benzoimidazol-2-yland 2-Benzothiazol-2-yl)-3-(5-phenylfuran-2-yl)-acrylonitriles Derivatives. Research J. Pharm. and Tech. 2020; 13(8):3690-3696. doi: 10.5958/0974-360X.2020.00653.8
Cite(Electronic):
Y. E. Matiichuk, T. I. Chaban, V. V. Ogurtsov, I. G. Chaban, V. S. Matiychuk. Antitumor Properties of Novel 2-(1H-Benzoimidazol-2-yland 2-Benzothiazol-2-yl)-3-(5-phenylfuran-2-yl)-acrylonitriles Derivatives. Research J. Pharm. and Tech. 2020; 13(8):3690-3696. doi: 10.5958/0974-360X.2020.00653.8 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-8-23
REFERENCES:
1. Hranjec M, Pavlović G, Marjanović M, Kralj M, Karminski-Zamola G. Benzimidazole derivatives related to 2,3-acrylonitriles, benzimidazo[1,2-a] quinolones and fluorenes: Synthesis, antitumor evaluation in vitro and crystal structure determination European Journal of Medicinal Chemistry. 2010; 45(6): 2405–2417. DOI: 10.1016/j.ejmech.2010.02.022.
2. Ma J, Li J, Tian YS. Synthesis and bioactivity evaluation of 2,3-diaryl acrylonitrile derivatives as potential anticancer agents. Bioorganic and Medicinal Chemistry Letters. 2017; 27 (1): 81–85. DOI: 10.1016/j.bmcl.2016.11.025.
3. Alafeefy AM, Isik S, Abdel-Aziz HA, Ashour AE, Vullo, Al-Jaber NA. Carbonic anhydrase inhibitors: Benzene sulfonamides incorporating cyanoacrylamide moieties are low nanomolar/ subnanomolar inhibitors of the tumor-associated isoforms IX and XII. Bioorganic and Medicinal Chemistry. 2013; 21(6): 1396–1403. DOI: 10.1016/j.bmc.2012.12.004.
4. Bondock S, Gieman H. Synthesis, antibacterial and anticancer evaluation of some new 2-chloro-3-hetarylquinolines. Research on Chemical Intermediates. 2015; 41(11): 8381–8403. DOI: 10.1007/s11164-014-1899-8.
5. Pomarnacka E, Bednarski R, Grunert P, Reszka P. Synthesis and anticancer activity of novel 2-amino-4-(4-phenylpiperazino)-1,3,5-triazine derivatives. Acta Poloniae Pharmaceutica. 2004; 61(6): 461–466.https://ptfarm.pl/pub/File/Acta_Poloniae/2004/6/461.pdf.
6. Bhusari KP, Amnerkar ND, Khedekar PB, Kale MK, Bhole RP. Synthesis and In Vitro Antimicrobial Activity of Some New 4-Amino-N-(1,3-Benzothiazol-2-yl) benzene sulphonamide Derivatives. Asian J. Research Chem. 2008; 1(2): 53-58. https://www.researchgate.net/publication/236695001_Synthesis_and_in_vitro_antimicrobial_activity_of_some_ new_4-amino-N-1_3-Benzothiazol-2-yl_benzenesulphonamide_derivatives.
7. Bele DS, Singhvi I. Synthesis of Some Mannich Bases of 6-Substituted-2-Aminobenzothiazole as Analgesic. Research Journal of Pharmacy and Technology. 2014; 7(3): 316-321. https://www.researchgate.net/publication /287377846_Synthesis_of_Some_Mannich_Bases_of_6-Substituted-2-Aminobenzothiazole_as_Analgesic.
8. Dahikar GD, Yeole PG, Ganjiwale RO, Rahangdale VT. The preparation and biological evaluation of some new 6-iodo-2-ethyl-4(3H)-3(5-substituted benzothiazole-2’-yl)quinazolinone derivatives as an anticonvulsant. Asian J. Research Chem. 2010; 3(3): 555-557.http://ajrconline.org/AbstractView.aspx?PID=2010-3-3-9.
9. Pattan SR, Pujar VD, Dighe NS, Musmade DS, Hiremath SN, Shinde HV, Laware RB. Synthesis and anti-inflammatory activity of 2-amino substituted benzothiazoles. Asian J. Research Chem. 2010; 3(1): 113-115.
10. Vyawahare D, Nikalje AP. Efficient One Pot Green Synthesis of 2-Aryl/ Heteryl- Benzothiazoles as Anti-inflammatory Agents. Asian J. Research Chem. 2010; 3(4): 872-875. https://www.indianjournals.com/ijor.aspx?target=ijor:ajrcand volume=3andissue=4andarticle=012.
11. Gawai A, Das S, Nemade M, Wathore S. Synthesis of New 7-(3-(benzo[d]thiazol-2-ylamino) propoxy)-4-methyl-2H-chromen-2-one derivatives with Atypical Antipsychotic activity. Asian J. Research Chem. 2011; 4(4): 591-596. http://ajrconline.org/AbstractView.aspx?PID=2011-4-4-16.
12. Alwin T, Abbs Fen Reji TF. Synthesis and antioxidant, antibacterial studies on 2-(2-arylaminothiazol-5-oyl) benzofurans. Asian J. Research Chem. 2017;10(6): 789-802. DOI:10.5958/0974-4150.2017.00133.X
13. Gupta A. Synthesis of Novel Methoxy Substituted Benzothiazole Derivatives and Antibacterial activity against Pseudomonas aeruginosa. Research Journal of Pharmacy and Technology.2018; 11(8): 3461-3465. http://rjptonline.org/AbstractView.aspx?PID=2018-11-8-44.
14. Kumar KR, K.N.S. Karthik, P. Reshma Begum, Ch. M.M. Prasada Rao. Synthesis, characterization and biological evaluation of benzothiazole derivatives as potential antimicrobial and analgesic agents. Asian J. Research Pharm. 2017; 7(2): 2231-5640. http://ajpsonline.com/AbstractView.aspx?PID=2017-7-2-10.
15. Priyadarsini R, Tharani CB, Ajitha Das Aruna A. Docking studies, Synthesis, Characterisation of Substituted Benzothiazoles as DHFR inhibitors and Evaluation of their Antitubercular Activities. Asian J. Research Chem. 2012; 5(9): 1136-1142. http://ajrconline.org/AbstractView.aspx?PID=2012-5-9-8.
16. Mugnaini C, Rajamaki S, Tintori C, Corelli F, Massa S, Witvrouw M. Toward novel HIV-1 integrase binding inhibitors: Molecular modeling, synthesis, and biological studies. Bioorganic and Medicinal Chemistry Letters. 2007; 17(19): 5370–5373. DOI: 10.1016/j.bmcl.2007.08.005.
17. Reshma RS, Jeankumar VU, Kapoor N, Saxena S, Bobesh KA, Vachaspathy AR. Mycobacterium tuberculosis lysine-ε-aminotransferase a potential target in dormancy: Benzothiazole based inhibitors. Bioorganic and Medicinal Chemistry. 2017; 25(10): 2761–2771. DOI: 10.1016/j.bmc.2017.03.053.
18. Jeankumar VU, Saxena S, Vats R, Reshma RS, Janupally R, Kulkarni P. Structure-Guided Discovery of Antitubercular Agents That Target the Gyrase ATPase Domain. Chem Med Chem. 2016; 11(5): 539–548. DOI: 10.1002/cmdc.201500556.
19. De la Torre P, Saavedra LA, Caballero J, Quiroga J, Alzate-Morales JH, Cabrera MG. A novel class of selective acetylcholinesterase inhibitors: synthesis and evaluation of (E)-2-(benzo[d]thiazol-2-yl)-3-heteroarylacrylonitriles. Molecules. 2012;17: 12072–12085.DOI: 10.3390/molecules171012072.
20. De-la-Torre P, Treuer AV, Gutierrez M, Poblete H, Alzate-Morales JH, Trilleras J. Synthesis and in silico analysis of the quantitative structure-activity relationship of heteroaryl-acrylonitriles as AChE inhibitors. Journal of the Taiwan Institute of Chemical Engineers. 2016; 59: 45-60.DOI: 10.1016/j.jtice.2015.07.022.
21. Tarleton M, Gilbert J, Sakoff JA, McCluskey A. Cytotoxic 2-phenylacrylnitriles, the importance of the cyanide moiety and discovery of potent broad spectrum cytotoxic agent. European Journal of Medicinal Chemistry. 2012; 57: 65–73.DOI: 10.1016/j.ejmech.2012.09.019.
22. Gorak YuI, Obushak ND, Matiichuk VS, Lytvyn RZ. Synthesis of heterocycles from arylation products of unsaturated compounds: XVIII. 5-Arylfuran-2-carboxylic acids and their application in the synthesis of 1,2,4-thiadiazole, 1,3,4-oxadiazole, and [1,2,4]triazolo[3,4-b][1,3,4] thiadiazole derivatives. Russian Journal of Organic Chemistry. 2009; 45(4): 541-550. DOI: 10.1134/S1070428009040125.
23. Obushak ND, Gorak YuI, Matiichuk VS, Lytvyn RZ. Synthesis of heterocycles based on arylation products of unsaturated compounds: XVII. Arylation of 2-acetylfuran and synthesis of 3-R-6-(5-aryl-2-furyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines. Russian Journal of Organic Chemistry. 2008; 44(11): 1689-1694. DOI: 10.1134/S1070428008110213.
24. Matiichuk VS, Potopnyk MA, Obushak ND. Molecular design of pyrazolo[3,4-d]pyridazines. Russian Journal of Organic Chemistry. 2008; 44(9): 1352-1361. DOI: 10.1134/S1070428008090182.
25. Ostapiuk YV, Obushak MD, Matiychuk VS, Naskrent M, Gzella AK. A convenient method for the synthesis of 2-[(5-benzyl-1,3-thiazol-2-yl) imino]-1,3-thiazolidin-4-one derivatives. Tetrahedron Letters. 2012; 53(5): 543-545. DOI: 10.1016/j.tetlet.2011.11.093.
26. Zimenkovskii BS, Kutsyk RV, Lesyk RB, Matyichuk VS, Obushak N.D, Klyufinska TI. Synthesis and antimicrobial activity of 2,4-dioxothiazolidine-5-acetic acid amides. Pharmaceutical Chemistry Journal. 2006; 40(6): 303-306. DOI: 10.1007/s11094-006-0115-6.
27. Tsyalkovsky VM, Kutsyk RV, Matiychuk VS, Obushak ND, Klyufinskaya TI. Synthesis and antimicrobial activity of 5-(R1-benzyl)-2-(R 2-benzylidenehydrazono)-3-(2-furylmethyl) thiazolidin-4-ones. Pharmaceutical Chemistry Journal. 2005; 39(5): 245-247. DOI: 10.1007/s11094-005-0126-8.
28. Pokhodylo NT, Savka RD, Matiichuk VS, Obushak ND. Synthesis and selected transformations of 1-(5-methyl-1-aryl-1H-1,2,3- triazol-4-yl)ethanones and 1-[4-(4-R-5-methyl-1H-1,2,3-triazol-1-yl)phenyl] ethanones. Russian Journal of General Chemistry. 2009; 79 (2): 309-314. Cited 14 times.DOI: 10.1134/S1070363209020248.
29. Zelisko N, Atamanyuk D, Ostapiuk Y, Bryhas A, Matiychuk V, Gzella A, Lesyk R. Synthesis of fused thiopyrano [2,3-d][1,3]thiazoles via hetero-Diels-Alder reaction related tandem and domino processes. Tetrahedron. 2015; 71 (50): 9501-9508. DOI: 10.1016/j.tet.2015.10.019.
30. Zubkov FI, Ershova JD, Zaytsev VP, Obushak MD, Matiychuk VS, Sokolova EA, Khrustalev VN, Varlamov AV. The first example of an intramolecular Diels-Alder furan (IMDAF) reaction of iminium salts and its application in a short and simple synthesis of the isoindolo[1, 2-a]isoquinoline core of the jamtine and hirsutine alkaloids. Tetrahedron Letters. 2010; 51(52): 6822-6824. DOI: 10.1016/j.tetlet.2010.10.046.
31. Pokhodylo NT, Matiychuk VS, Obushak ND. A convenient method for the synthesis of thiopyrano [4,3-c]quinoline, a new heterocyclic system. Chemistry of Heterocyclic Compounds. 2009; 45(1): 121-122. Cited 10 times.DOI: 10.1007/s10593-009-0238-2.
32. Chaban TI; Zimenkovskii BS, Komaritsa JD, Chaban IG. Reaction of 4-iminothiazolidin-2-one with acetylacetone. Russian Journal of Organic Chemistry. 2012; 48 (2): 268−272. DOI: 10.1134/S1070428012020170.
33. Chaban T, Klenina O, Drapak I, Ogurtsov V, Chaban I, Novikov V. Synthesis of some novel thiazolo[4,5-b] pyridines and their tuberculostatic activity evaluation. Chemistry and Chemical Technology. 2014; 89: 287-292. http://science2016.lp.edu.ua/sites/default/files/Full_text_of_%20papers/full_text_103.pdf.
34. Chaban TI, Klenina OV, Zimenkovsky BS, Chaban IG, Ogurtsov VV, Shelepeten LS. Synthesis of novel thiazolo[4,5-b]pyridines as potential biologically active substances. Der PharmaChemica. 2016; 8(19): 534-542.https://www.derpharmachemica. com/pharma-chemica/ synthesis-of-novel-.
35. Klenina O, Chaban T, Zimenkovsky B, Harkov S, Ogurtsov V, Chaban I, Myrko I. Qsar modeling for antioxidant activity of novel N3 substituted 5,7-dimethyl-3Н-thiazolo[4,5-b]pyridin-2-ones. Pharmacia. 2017; 64(4): 49-71. http://bsphs.org/?magasine=qsar-modeling-for-antioxidant-activity-of-novel-n3-substituted-57-dimethyl-3%d0%bd-thiazolo45-bpyridin-2-ones.
36. Chaban T, Matiychuk V, Ogurtsov V, Chaban I, Harkov S, Nektegaev I. Synthesis and biological activity of some novel derivatives 5,7-dimethyl-6-phenylazo-3Н-thiazolo[4,5-b]pyridine-2-one. Pharmacia. 2018; 65 (4): 51-62. http://bsphs.org/?magasine=synthesis-and-biological-activity-of-some-novel-derivatives-57-dimethyl-6-phenylazo-3%d0%bd-thiazolo45-bpyridine-2-one.
37. Chaban TI, Ogurtsov VV, Matiychuk VS, Chaban IG, Demchuk IL, Nektegayev IA. Synthesis, anti-inflammatory and antioxidant activities of novel 3H-thiazolo[4,5-b]pyridines. Acta Chimica Slovenica. 2019; 66: 103–111.DOI:10.17344/acsi.2018.4570.
38. Obushak ND, Lesyuk AI, Gorak YuI, Matiichuk VS. Mechanism of Meerweinarylation of furan derivatives. Russian Journal of Organic Chemistry. 2009; 45(9): 1375–1381. DOI: 10.1134/S1070428009090103.
39. Boyd MR, Paull KD. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Development Research. 1995; 34: 91-109. DOI: 10.1002/ddr.430340203
40. Boyd MR, Teicher BA. In: cancer drug discovery and development. Humana Press. 1997; 2:23-43.
41. Shoemaker RH. The NC I60 human tumour cell line anticancer drug screen. Nature Revives Cancer, 2006; 6: 813-23.DOI:10.1038/nrc1951.