Author(s): Keshav Singh, Deepak Kumar Bhartiya

Email(s): keshav26singh@rediffmail.com

DOI: 10.5958/0974-360X.2020.00633.2   

Address: Keshav Singh*, Deepak Kumar Bhartiya
Vermibiotechnology Laboratory, Department of Zoology, D.D.U. Gorakhpur University, Gorakhpur-273009 U.P. India.
*Corresponding Author

Published In:   Volume - 13,      Issue - 8,     Year - 2020


ABSTRACT:
Accumulation of heavy metals concentration in contaminated soil before sowing and after harvesting of Rice (Oryza sativa L.) crops as well as vermicompost of different animal dung and in earthworm body were determined. The heavy metal concentration of Co, Cr and Pb were observed significant (P<0.05) % decreased in final vermicompost with respect to initial feed mixture of different animal dung. The earthworm Eisenia fetida is a suitable species for vermicomposting and accumulation of heavy metals from biological wastes and soil. The application of vermicompost and use of Eisenia fetida in rice field soil which remediate the toxic heavy metal from wheat grains and beneficial for human, animal and environment. T maximum amount of Cobalt (Co) was observed to decrease in combination of soil with cow dung vermicompost inoculed with earthworm E. fetida 44.04% wheaeas, the maximum Cromium (Cr) decrease in horse dung with soil 17.20% and lead (Pb) in combination of soil with goat dung 32.72%. The significant heavy metal accumulation of Co, Cr and Pb were observed to decrease in final vermicompost of animal dung and in wheat grain.


Cite this article:
Keshav Singh, Deepak Kumar Bhartiya. Minimization of health problems through Vermibiotechnology and accumulation of heavy metal from Biological Waste, Soil and Rice (Oryza sativa L.). Research J. Pharm. and Tech. 2020; 13(8):3580-3586. doi: 10.5958/0974-360X.2020.00633.2

Cite(Electronic):
Keshav Singh, Deepak Kumar Bhartiya. Minimization of health problems through Vermibiotechnology and accumulation of heavy metal from Biological Waste, Soil and Rice (Oryza sativa L.). Research J. Pharm. and Tech. 2020; 13(8):3580-3586. doi: 10.5958/0974-360X.2020.00633.2   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-8-6


REFRENCES:
1.    Sharma SD, Tripathy S, Biswal J. Origin of O. sativa and its ecotypes. In: Nanda, J.S. (ed). Rice breeding and genetics: Research priorities and challenges. 2000;349-369. Science Publishers, Enfield and Oxford and IBH, New Delhi.
2.    Baker ASP, McGrat CM, Sidololi CM, Reeves RD. The possibility of in situ heavy metals decontamination of polluted soils using crops of metals accumulating plants. Res. Conserv. Recyle. 1994;11:41-49.
3.    Soltan ME, Rasheed MN. Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Adv. Environ. Res. 2003; 7(2):321-334.
4.    Kaviraj, Sharma S. Municipal solid wastes management throw vermicomposting employing exotic and local species of earthworm. Biores. Technol. 2003; 90:169-173.
5.    Bhatacharya SS, Chattopadhyay GN. Transformation of nitrogen during vermicomposting of fly ash. Waste Management Resource. 2004; 22:488-491.
6.    Suthar SS, Watts J, Sandhu M, Rana S, Kanwal A, Gupta D, Meena MS. Vermicomposting of kitchen waste by using Eisenia foetida (Savigny). Asian J. Microbiol. Biotech. Env. Sci. 2005; 7:541-544.
7.    Wijewardena JDH. Effect of organic and chemical fertilizers on vegetable cultivation in Up Country Intermediate Zone. Tropical Agriculturist. 1993;149:1-11.
8.    Wijewardena JDH, Yapa UWSP. Effect of the combined use of animal manure and chemical fertilizer on potato and vegetable cultivation in the upcountry of Sri Lanka. Sri Lankan J. Agric. Sci. 1999; 36:70-82.
9.    Wijewardena JDH. Sustainable plant nutrient management in intensive vegetable growimg lands in the Upcountry of Sri Laka. J. Soil Sci. Soc. Sri Lanka. 2000; 12:1-13.
10.    Garg VK, Kaushik P. Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia foetida. Biores. Technol. 2005; 96:1063-1071.
11.    Wijewardena JDH, Gunaratne SP. Heavy Development Authority Government of metal contents in commonly used animal manure. J. Pakistan Pre-Feasibility Study Broiler farm. PREF., Soil Sci. Soc. Sri Lanka. 2004; 6:245-253.
12.    Paraskeva P, Diamadopoulos E. Technologies for olive mill wastewater (OMW) treatment: a review. J. Chem. Technol. Biotechnol. 2006; 81:1475-1485.
13.    Nair J, Sekiozoic V, Anda M. Effect of pre-composting on vermicomposting of kitchen waste. Bioresour. Technol. 2006; 97:2091-2095.
14.    Chauhan A, Kumar S, Singh AP, Gupta M. Vermicomposting of Vegetable Wastes with Cow dung Using Three Earthworm Species Eisenia foetida, Eudrilus eugeniae and Perionyx excavatus. Nature and Science. 2010; 8(1):33-43.
15.    Kaplan O, Yildrim NC, Yildirim N, Cimen M. Toxic elements in animal products and environmental health. Asian J. Anim. Vet. Adv. 2011; 6(3):228-232.
16.    Edwards CA, Dominguez J, Neuhauser EF. Growth and reproduction of Perionyx excavatus (Perr.) (Megascolecidae) as factor in organic waste management. Biol. Fertil. Soil. 1998; 27:155-161.
17.    Gunadi B, Blount C, Edward CA. The growth and fecundity of Eisenia foetida (Savigny) in cattle solids pre-composted for different periods. Pedobiologia. 2002; 46:15-23.
18.    Kaushik P, Garg VK. Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia foetida. Biores. Technol. 2003; 90:311- 316.
19.    Morgan JE, Morgan AJ. The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): implications for ecotoxicological testing. Appl. Soil Ecol. 1999; 13:9-20
20.    Neuhauser EF, Cukic ZV, Malecki MR, Loehr RC, Durkin PR. Bioconcentration and biokinet¬ics of heavy metals in the earthworm. Environ. Pollution. 1995; 89:293-301.
21.    Van Straalen, NM, Bergema WF. Ecological risks of increased bioavailability of metals under soil acidification. Pedobiologia. 1995; 39:1-9.
22.    Mccrady JK, Maggard SP. Uptake and photodegradation of 2,3,7,8-tetra chlorodibenzeno-p-dioxin sorbed to grass foliage. Environ. Sci. Techol. 1993; 27:343.
23.    Hauk H, Umlauf G, Mclachlan S. Uptake of gaseous DDE in spruce needles. Environ. Sci. Technol. 1994; 28:2372-9.
24.    Farago ME. Plants as indicators of mineralisation and pollution, in: Plants and the Chemical Elements, VCH, Wienheim.2008; 221-240.
25.    Berthelsen BO, Steinnes E, Solberg W, Jingsen L. Heavy metals concentrations in plants relation to atmospheric heavy metals deposition. J. Environ. Qual. 1995; 24:10-18.
26.    Gorna-Binkul A, Keymeulen R, Van Langenhove H, Buszewski B. Determination of monocyclic aromatic hydrocarbons in fruit and vegetables by gas chromatography-mass spectrometry. J. Chromatogr. A.1996; 734(2): 297-302.
27.    Pandolfini T, Gremigni P, Gabbrielli R. Biomonitoring of Soil Health by Plants, in: Biological Indicator of Soil Health and Sustainable Productivity, CAB International. 1997; 325.
28.    Namiesnik J, Wardencki W. Solventless sample preparation techniques in environmental analysis. JHRC. 2000; 23:297.
29.    Tam NFY, Wong YS. Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ. Pollut. 2000; 100(2):195-205.
30.    Yuan CJ, Shi B, He J, Liu L, Jiang G. Speciation of heavy metals in marine sediments from the East Chino sea by ICP-MS with sequential extraction. Environ. Int. 2004; 30(6):769-783.
31.    Nawrot TS, Staessen JA, Roels HA. Cadmium exposure in the population: from health risks to strategies of prevention. BioMetals, 2010; 23:769-782.
32.    Rajaganapathy V, Xavier F, Sreekumar D, Mandal PK. Heavy metal contamination in soil, water and fodder and their presence in livestock and product: a review. J. Env. Sci. Tech. 2011; 4(3):234-249.
33.    Mazumder DN. Chronic arsenic toxicity and human health. Indian J. Med. Res. 2008; 128:436–447.
34.    Martine S, Griswold W. Human health effect of heavy metals. Environ. Sci. & Technol., Briefs for citizens. 2009; 15:1-6.
35.    Hu H. Human health and heavy metal exposure. The environmental and Human Health (Michael Mc Callyed), MIT press. 2002; 1-13.
36.    Roels HA, Van Asche FJ, Overstays M, De Groof M, Lauwerys RR, Lison D. Reversibility of microproteinuria in cadmium workers with incipient tubular dysfunction after reduction of exposure. Am. J. Ind. Med. 1997; 31:645-652.
37.    Ye J, Wang S, Barger M, Castranava V, Shi X. Activation of androgen response element by cadmium; a potential mechanism for a carcinogenic effect of cadmium in the prostate. J. Environ. Pathol. Taxicol. Oncal. 2000; 19:275-80.
38.    Leonard AO, Dolfing J. Cadmium uptake by earthworms as related to the availability in the soil in the intestine. Environ. Contam. Toxicol. 2001; 20:1786-1791.
39.    Dei J, Becquer T. Heavy metal accumulation by two earthworm species and its relationship to total and DTPA- extrctable metals in soil. Soil Biol. & Boichemi. 2004; 36:91-98.
40.    Saxena M, Chauhan A. Flyash vermicomposting from non-organic wastes. Pollut Res.1998; 17:5-11.
41.    Shahmansouri MR, Pourmoghadas H, Parvaresh AR, Alidadi H. Heavy metals bioaccumulation by Indian and Australian earthworm (Eisenia foetida) in the sewage sludge vermicomposting. Iranian J. Environ., 2 Health Sci., Eng. 2005; 28-33.
42.    Hartenstein R, Neuhauser EF, Kaplan DL. Reproductive potential of earthworm Eisenia foetida. Oecologia. 1979; 43:329-340.
43.    Bhole RJ. Vermiculture biotechnology basic scope for application and development. Proc. National Seminar Organic Farming held at college of Agril, Pune, Jan. 1992; 28-29.
44.    Kaushik P, Garg VK. Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia foetida. Biores. Technol. 2003; 90:311- 316.
45.    Gupta SK, Tewari A, Srivastava R, Murthy RC, Chandra S. Potential of Eisenia foetida for sustainable and efficient vermicomposting of fly ash. Water Air Soil Pollut. 2005;163:293-302.
46.    Govindan VS. Vermiculture and vermicomposting in ecotechnology for pollution control and environment management. (R.K. Trivedy and A. Kumar eds.), Environ. Media. Karad. 1998; 49-57.
47.    Lanno R, Wells J, Conder J, Bradham K, Basta N. The bioavailability of chemicals in soil for earthworms. Ecotoxicol. & Environ. Safety. 2004; 57:39-47.
48.    Fisher E, Molnar L. Environmental aspects of Chologogenous tissue of earthworms. Soil Biol. Biochem.1992; 28:1723-1727
49.    Suthar S, Singh S. Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int. J. Environ. Sci. Technol. 2008; 5:99-106.
50.    Macki Aleagha M, Pedram M, Omarani G. Bioaccumulation of heavy metals by Iranian Earthworm (Eisenia foetida) in the Process of vermicomposting. American-Eurasian J. Agric. and Environ Sci. 2009; 5(4):480-484.
51.    Macki AM, Samadyar S. Impact of metal interaction on earthworms’ bioaccumulation in the process of vermicomposting. CEST: 11th Int. Conf. Environ. Sci. Technol. 2009; 575-580.
52.    Aleagha MM, Ebadi AG. Study of heavy metals bioaccumulation in the process of vermicomposting. African J. Biotechnol. 2011; 10(36):6997-7001.
53.    Jain S, Singh V. Lightning Paths in Sky Share Similarities with Channel Networks on Earth. EOS, Transactions of the American Geophysical Union 2004;85(26): doi: 10.1029/2004EO260001. ISSN: 0096-3941.
54.    Maboeta SM, Van Resburg L. Vermicomposting of industrially produced woodchips and sewage sludge utilizing Eisenia fetida. Ecotoxicol. Environ. Safety, 2003; 56 (2):265-270.
55.    Katz SA, Jenneis SW. Regulatory compliance monitory by atomic absorption spectroscopy. Verlay Chemical International, fl. 1983.
56.     Jordao CP, Nascentes CC, Cecon PR, Fontes RLF, Pereira JL. Heavy metal availability in soil amended with composted urban solid wastes. Environmental Monitoring and Assessment. 2006; 112:309-326.
57.     Suthar S, Singh S, Dhawan S. Earthworm as bioindicators of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils: Is metal bioaccumulation affected by their ecological categories. Ecol. Eng. 2008; 32:99-107.
58.    Selladurai G, Anbusaravanan N, Shyam KP, Palanivel K, Kadalmlmani B. Biomanagement of municipal sludge using epigenic earthworms Eudrilus eugeniae and Eisenia fetida. Adv. Environ. Biol. 2009; 3(3):278-284.
59.    Liu X, Hu C, Zhang S. Effect of earthworm activity on fertility and heavy metal bioavailability in sewage sludge. Environ. Letter. 2005; 31:874-879.
60.    Wijewardena JDH, Gunaratne SP. Heavy Development Authority Government of metal contents in commonly used animal manure. J. Pakistan Pre-Feasibility Study Broiler farm. PREF., Soil Sci. Soc. Sri Lanka. 2004; 6:245-253.
61.    Markowitz M. Lead Poisoning. Pediatrics in Review. 2000; 21:327-335.
62.    Ireland MP. Heavy Metals Uptake in Earthworms. In: Earthworm Ecology. Chapman & Hall, London. 1983.
63.    Sharma RK, Agrawal M, Marshall FM. Heavy metals (Cu, Cd, Zn and Pb) contamination of vegetables in Urban India: a case Study in Varanasi. Environ. Poll. 2008; 154:254–263
64.    Sharma P, Abrol V, Shankar GRM. Effect of tillage and mulching management on the crop productivity and soil properties in maize-wheat rotation. Research on Crops. 2009; 10:536-541.
65.    Hsu MJ, Selvaraj K, Agoramoorthy G. Taiwan’s industrial heavy metal pollution threatens terrestrial biota. Environ. Pollut. 2006;143:327–334.
66.    Morgan JE, Richards SPG, Morgan AJ. Stable strontium accumulation by earthworms: A paradigm for radio strontium interactions with its cation analogue, calcium. Environ. Toxicol. Chem. 2001; 20:1236-1243.
67.   Pattnaik S, Reddy MV. Heavy metals remediation from urban wastes using three species of earthworm (Eudrilus eugeniae, Eisenia fetida and Perionyx excavatus). J. Environ. Chem. & Ecotoxicol. 2011; 3(14):345-356.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available