Author(s):
Muhammad Ihwan Narwanto, Masruroh Rahayu, Setyawati Soeharto, Nurdiana, Mochammad Aris Widodo
Email(s):
muhammadnarwanto@unej.ac.id
DOI:
10.5958/0974-360X.2020.00714.3
Address:
Muhammad Ihwan Narwanto1,2,*, Masruroh Rahayu3, Setyawati Soeharto4, Nurdiana4, Mochammad Aris Widodo4
1Doctoral Program of Medical Science, Faculty of Medicine, University of Brawijaya, Malang, Indonesia.
2Department of Anatomy, Faculty of Medicine, University of Jember, Jember, Indonesia.
3Department of Neurology, Faculty of Medicine, University of Brawijaya, Malang, Indonesia.
4Department of Pharmacology, Faculty of Medicine, University of Brawijaya, Malang, Indonesia.
*Corresponding Author
Published In:
Volume - 13,
Issue - 9,
Year - 2020
ABSTRACT:
Objective: To investigate the neuroprotective potency of Tamarindus indica seed extract (TSE) for Alzheimer's prevention-based on the pathogenesis of the disease. Methods: Rats were divided into 6 groups: normal, control, aluminum chloride (AlCl3), low, moderate and high dose of TSE. The Morris water maze test was used to evaluate the memory. Proinflammatory cytokines levels were estimated by enzyme-linked immunosorbent assay method. Malondialdehyde levels were measured by the thiobarbituric acid reactive substances method. Results: Administration of 50 mg/kg TSE were decreased cerebral cortex levels of proinflammatory cytokines and lipid oxidation products, and protected memory impairment due to the induction of AlCl3. Conclusion: Data from this study confirmed the neuroprotective benefits of TSE for Alzheimer’s prevention based on the pathogenesis of the disease. Further, these results could lead to the development of Alzheimer's prevention.
Cite this article:
Muhammad Ihwan Narwanto, Masruroh Rahayu, Setyawati Soeharto, Nurdiana, Mochammad Aris Widodo. Neuroprotective Potency of Tamarindus indica Seed Extract for Preventing Memory Impairment in Rat Model of Alzheimer's Disease. Research J. Pharm. and Tech 2020; 13(9):4041-4046. doi: 10.5958/0974-360X.2020.00714.3
Cite(Electronic):
Muhammad Ihwan Narwanto, Masruroh Rahayu, Setyawati Soeharto, Nurdiana, Mochammad Aris Widodo. Neuroprotective Potency of Tamarindus indica Seed Extract for Preventing Memory Impairment in Rat Model of Alzheimer's Disease. Research J. Pharm. and Tech 2020; 13(9):4041-4046. doi: 10.5958/0974-360X.2020.00714.3 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-9-2
REFERENCES:
1. Selkoe, D. J. Alzheimer's disease: genes, proteins, and therapy. Physiological reviews. 2001;81(2):741-766.
2. Buchake, V.V., Muthal, A.P., Saudagar, R.B., and Bachhav, R.S. A Neurodegenerative disorder-Alzheimer disease: A Treatise. Research J. Pharmacology and Pharmacodynamics. 2010;2(4): 268-273.
3. Ferri, C., Sousa, R., Albanese, E., Ribeiro, W., and Honyashiki, M. World Alzheimer Report 2009-Executive Summary. Edited by: Prince M, Jackson J. London, 2009. 1-22.
4. Jayakar, J. P., and Huang, J. Alzheimer’s disease: A review of diagnostic criteria. Univ. West. Ont. Med, 2010;72:7-9.
5. Choudhury, S., and Vellapandian, C. Alzheimer’s Disease Pathophysiology and its Implications. Research J. Pharm. and Tech. 2019; 12(4):2045-2048.
6. Sajjad, R., Arif, R., Shah, A.A., Manzoor, I., and Mustafa, G. Pathogenesis of Alzheimer’s Disease: Role of Amyloid-β and Hyperphosphorylated Tau Protein. Indian J Pharm Sci. 2018; 80(4):581-591.
7. Aanandhi, M.V., Niventhi, A., Rujaswini,T., Hemalatha, C.N.,and Praveen, D. A Comprehensive Review on the Role of Tau Proteins in Alzheimer’s Pathology. Research J. Pharm. and Tech. 2018; 11(2):788-790.
8. Al-Hatamleh, M. A.I., Al-Shajrawi, O.M., Khan, S., Nadeem, M. I., Simbak, N.b., Latif, A.Z., et al. Effects of Oxidative Stress on Alzheimer's Disease, Haematological Perspective. Research J. Pharm. and Tech. 2018; 11(9):3881-3886.
9. Sharma, V.K. Current Therapeutic Strategies for Alzheimer’s disease: A Lost Direction or A Hope Remains? Research J. Pharmacology and Pharmacodynamics. 2010; 2(3): 215-220.
10. Venkatachalam, S., Jaiswal, A., Anindita De, Vijayakumar, R.K. Repurposing Drugs for Management of Alzheimer Disease. Research J. Pharm. and Tech. 2019; 12(6):3078-3088.
11. Ratheesh, G., Tian, L., Venugopal, J.R., Ezhilarasu, H. Sadiq, A., Fan, T., et al. Role of medicinal plants in neurodegenerative diseases. Biomanuf Rev.2017;2:2.
12. Velraj, M.,and Lavaniy, N. Alzheimer Disease and a Potential Role of Herbs-A Review. Research J. Pharm. and Tech. 2018; 11(6):2695-2700.
13. Jadhav, R.P., Kengar, M.D., Narule, O.V., Koli, V.W., and Kumbhar, S.B. A Review on Alzheimer’s Disease (AD) and its Herbal Treatment of Alzheimer’s Disease. Asian J. Res. Pharm. Sci. 2019; 9(2):112-122.
14. Lin, W.-T., Chen, R.-C., Lu, W.-W., Liu, S.-H., and Yang, F.-Y. Protective effects of low-intensity pulsed ultrasound on aluminum-induced cerebral damage in Alzheimer's disease rat model. Scientific Reports. 2015;5:9671 DOI:10.1038.
15. Reddy, B.M., Dhanapal, C.K., and Lakshmi, B. V. S. Anti-Alzheimer's Activity of aqueous extract of leaves of Murraya koenigii in Aluminium chloride Induced Neurotoxicity in rats. Research J. Pharm. and Tech. 2019; 12(4):1927-1934.
16. Ahmed, O. G., Thabet, H. Z., and Mohamed, A. A. Inflammation Versus Oxidative Stress in Pathophysiology of Alzheimer's disease in rats model. Ibnosina Journal of Medicine and Biomedical Sciences. 2013;6(3):130-144.
17. Chen, S.-M., Fan, C.-C., Chiue, M.-S., Chou, C., Chen, J.-H., and Hseu, R.-S. Hemodynamic and neuropathological analysis in rats with aluminum trichloride-induced Alzheimer's disease. PLoS One. 2013;8(12):e82561.
18. El-Siddig, K., Gunasena, H.P.M., Prasad, B.A., Pushpakumara, D.K.N., Ramana, G.K.V.R., Vijayanand, P., et al. Tamarind: Tamarindus Indica L. Southampton: Southampton Centre for Underutilised Crops; 2006.1-9.
19. Kuru, P. Tamarindus indica, and its health-related effects. Asian Pacific Journal of Tropical Biomedicine. 2014;4(9):676-681.
20. Meher, B., Dash, D. K., and Roy, A. A review on Phytochemistry, pharmacology and traditional uses of Tamarindus indica L. World J Pharm Pharmaceut Sci. 2014;3:229-240.
21. Chunglok, W., Utaipan, T., Somchit, N., Lertcanawanichakul, M., and Sudjaroen, Y. Antioxidant and Antiproliferative Activities of Non-Edible Parts of Selected Tropical Fruits. Sains Malaysiana. 2014;43(5):689-696.
22. Rossi, L., Mazzitelli, S., Arciello, M., Capo, C., and Rotilio, G. Benefits from dietary polyphenols for brain aging and Alzheimer’s disease. Neurochemical Research. 2008; 33(12):2390-2400.
23. Spencer, J. P. Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes and Nutrition. 2009; 4(4):243-250.
24. Baydar, T., Papp, A., Aydin, A., Nagymajtenyi, L., Schulz, H., Isimer, A., et al. Accumulation of aluminum in rat brain. Biological Trace Element Research. 2003;92(3):231-244.
25. Sundaram, M. S., Hemshekhar, M., Santhosh, M. S., Paul, M., Sunitha, K., Thushara, R. M., et al. Tamarind seed (Tamarindus indica) extract ameliorates adjuvant-induced arthritis via regulating the mediators of cartilage/bone degeneration, inflammation, and oxidative stress. Scientific Reports. 2015;5:11117 Doi: 10.1038
26. Narwanto, M. I., Rahayu, M., Soeharto, S., Nurdiana, and Widodo, M. A. Identification and In Silico Analysis of Anti Inflammation and Anti Oxidant Potentials of Polyphenol Compounds in Methanol Extract of Tamarindus indica Seeds. Journal of Agromedicine and Medical Sciences. 2018;4(1):13-17.
27. Bromley-Brits, K., Deng, Y., and Song, W. Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. JoVE (Journal of Visualized Experiments). 2011;(53):e2920-e2920.
28. Aly, H. F., Metwally, F. M., and Ahmed, H. H. Neuroprotective effects of dehydroepiandrosterone (DHEA) in rats model of Alzheimer’s disease. Acta Biochim Pol. 2011;58(4):513-520.
29. Sinha, N., Baquer, N., and Sharma, D. Anti-lipid peroxidative role of exogenous dehydroepiandrosterone (DHEA) administration in normal aging rat brain. Indian Journal of Experimental Biology. 2005;14:420-424.
30. Rather, M. A., Thenmozhi, A. J., Manivasagam, T., Bharathi, M. D., Essa, M. M., and Guillemin, G. J. Neuroprotective role of Asiatic acid in aluminum chloride-induced rat model of Alzheimer’s disease. Frontiers In Bioscience Scholar. 2008;10:262-275.
31. Dheen, S. T., Kaur, C., and Ling, E. A. Microglial Activation and its Implications in the Brain Diseases. Current Medicinal Chemistry. 2007;14:1189-1197.
32. Jang, E., Kim, J. H., Lee, S., Kim, J.H., Seo, J. W., and Jin, M., et al. Phenotypic Polarization of Activated Astrocytes: The Critical Role of Lipocalin-2 in the Classical Inflammatory Activation of Astrocytes. J Immunol. 2013;191:5204-5219.
33. Kawahara, M., and Kato-Negishi, M. Link between aluminum and the pathogenesis of Alzheimer's disease: the integration of the aluminum and amyloid cascade hypotheses. International journal of Alzheimer’s disease, 2011. doi:10.4061.
34. Grotto, D., Maria, L. S., Valentini, J., Paniz, C., Schmitt, G., Garcia, S. C., et al. Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quimica Nova. 2009;32(1):169-174.
35. Song, C., and Horrobin, D. Omega-3 fatty acid ethyl-eicosapentaenoate, but not soybean oil, attenuates memory impairment induced by central IL-1 administration. Journal of Lipid Research. 2004;45:1112-1121.
36. Wenk, G. L., Mcgann, K., Hauss-Wegrzyniak and Rosi, S. The Toxicity Of Tumor Necrosis Factor Upon Cholinergic Neurons Within The Nucleus Basalis And The Role Of Norepinephrine In The Regulation Of Inflammation: Implications For Alzheimer’s Disease. Neuroscience. 2003;121:719–729.
37. Wall, A. M, Mukandalaa, G., Greigb, H., and O’Connora, J. Tumor necrosis factor-α potentiates long-term potentiation in the rat dentate gyrus after acute hypoxia. J Neurosci Res. 2015;93(5): 815–829.
38. Betzen, C., White, R., Zehendner, C. M., Pietrowski, E., Bender, B., Luhmann, H.J., et al. Oxidative Stress Upregulates The NMDA receptor on Cerebrovascular Endotheium. Free Radical Biology and Medicine. 2009;47:1212-1220.
39. Massaad, C.A., and Klann, E. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory. Antioxidants and Redox Signaling. 2011;14(10):2013-2027.
40. Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., Bennett, D. A., Aggarwal, N., et al. Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. Jama. 2002;287(24):3230-3237.
41. Scarmeas, N., Stern, Y., Mayeux, R., Manly, J. J., Schupf, N., and Luchsinger, J. A. Mediterranean diet and mild cognitive impairment. Archives of neurology. 2009;66(2):216-225.
42. Razali, N., Junit, S. M., Ariffin, A., Ramli, N. S. F., and Aziz, A. A. Polyphenols from the extract and fraction of T. indica seeds protected HepG2 cells against oxidative stress. BMC complementary and alternative medicine. 2015;15:438.Doi 10.1186.
43. Suresh, R., Mhaske, G.P., Chalichem, N.S., Javvadi, A. K., Johnson, B., and Venkatanarayanan, R. Pharmacological Evaluation of Antiasthmatic Activity of Tamarindus indica Seed. Research J. Pharmacology and Pharmacodynamics. 2011; 3(3): 115-122.
44. Chao, P.-C., Hsu, C.-C., and Yin, M.-C. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in the cardiac tissue of diabetic mice. Nutrition and metabolism. 2009;6(33).
45. Yusuf, M., Nasiruddin, M., Sultana, N., Badruddeen, Akhtar, J., Khan, M.I., et al. Regulatory Mechanism of Caffeic acid on glucose Metabolism in Diabetes. Research J. Pharm. and Tech. 2019; 12(10):4735-4740.
46. Zhao, J., Hong, T., Dong, M., Meng, Y., and Mu, J. Protective effect of myricetin in dextran sulphate sodium-induced murine ulcerative colitis. Molecular medicine reports. 2013;7(2):565-570.
47. Yang, B.-Y., Zhang, X.-Y., Guan, S.-W., and Hua, Z.-C. Protective effect of procyanidin B2 against CCl4-induced acute liver injury in mice. Molecules. 2015;20(7):12250-12265.