Author(s): Farah Hamad Farah

Email(s): f.hamad@ajman.ac.ae

DOI: 10.5958/0974-360X.2020.00785.4   

Address: Farah Hamad Farah
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P O Box 346, United Arab Emirates.
*Corresponding Author

Published In:   Volume - 13,      Issue - 9,     Year - 2020


ABSTRACT:
Protein-based biopharmaceuticals are prone to physical or chemical instabilities. Their major instability is the high tendency of their molecules to aggregate under a wide range of processing and improper storage conditions. Protein aggregation is classified into native protein conformations (colloidal instability) or partially denatured (non-native) protein aggregation. Both aggregation pathways may occur for the same protein. A clear knowledge of which route of aggregation dominates under particular formulation conditions is essential. In order to prevent protein aggregation, both aggregation pathways should be targeted in a systematic way. Certain formulation conditions, which reduce aggregation through one pathway, may lead to an increase in aggregation through the other pathway; therefore, in order to reduce protein aggregation due to both pathways, a balanced formulation procedure can be adopted. Long-term stability of protein-based biopharmaceuticals is attainable by two main strategies. The first is the designing of molecules that are aggregation-resistant and the second is the inclusion of formulation additives that prevent aggregation. The ideal way is to develop a rapid method of predicting stability at the early stage of the product development, with a reasonable level of confidence. Measurements probing conformational stability, such as protein melting temperature (Tm) and time-dependent rates of thermal unfolding, as well as measurements probing colloidal stability, such as second virial coefficients (B22) from static light scattering or protein precipitation by salting out technique, should be performed to give a clear picture of the mechanisms that may have an impact on long-term stability. The main clinical consequences of protein-based biopharmaceuticals is immunogenicity. The implications of an immune reaction to protein-based biopharmaceuticals, range from transient appearance of antibodies without clinical significance to severe life threatening complications such as anaphylaxis, neutralization of the effectiveness of lifesaving or highly effective therapies, or neutralization of endogenous proteins with non-redundant functions and decrease in efficacy and induction of autoimmunity, including antibodies to the endogenous form of the protein.


Cite this article:
Farah Hamad Farah. Stability and potential clinical Consequences of protein-based Biopharmaceuticals. Research J. Pharm. and Tech 2020; 13(9):4443-4452. doi: 10.5958/0974-360X.2020.00785.4

Cite(Electronic):
Farah Hamad Farah. Stability and potential clinical Consequences of protein-based Biopharmaceuticals. Research J. Pharm. and Tech 2020; 13(9):4443-4452. doi: 10.5958/0974-360X.2020.00785.4   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-9-73


REFERENCES:
1.    Kopito R R. Unfolding the secrets of protein aggregation. Trends Cell Biol. 2016; 26: 559-560.
2.    Carter P J. Potent antibody therapeutics by design, Nat. Rev. Immunol. 2006; 6: 343–357.
3.    Wilhelm SM Love B L. Management of patients with inflammatory bowel disease: current and future treatments. Clinical Pharmacist.2017; 3(9):83-92.
4.    Baselga J Cortes J Kim S.B Im S.A. Hegg R Im YH Roman L Pedrini J L Pienkowski T Knott A Clark E Benyunes MC Ross G Swain S.M. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer, N. Engl. J. Med. 2012; 366 (2):109–119.
5.    Tausend W Downing C Tyring S. Systematic review of interleukin-12, interleukin-17, and interleukin-23 pathway inhibitors for the treatment of moderate-to-severe chronic plaque psoriasis: ustekinumab, briakinumab, tildrakizumab, guselkumab, secukinumab, ixekizumab, and brodalumab. J Cutan Med Surg. 2014; 18:156–169.
6.    Vazquez-Rey and Lang D A. Aggregates in monoclonal antibody manufacturing processes, Biotechnol Bioeng. 2011; 108(7):1494-508.
7.    Skamris T Xinsheng T Thorolfsson M Karkov HS Rassmusen HB Langkilde AE Vestergaard BV. Monoclonal antibodies follow distinct aggregation pathways during production-relevant acidic incubation and neutralization. Pharm. Res. 2015; 33 (3):716–728.
8.    Srinivas LV Manikanta M Jaswitha. Protein and Peptide Drug Delivery-A Brief Review. Research J. Pharm. and Tech. 2019; 12(3):1369-1382.
9.    Mahler HC Friess W Grauschopf U Kiese S. Protein aggregation: Pathways, induction factors and analysis . J Pharm Sci. 2009; 98 (9): 2909-2934.
10.    Basu A Yang K Wang M Liu S Chintala R Palm T Zhao H Peng P Wu D Zhang Z Hua J Hsieh MC Zhou J Petti G Li X Janjua A Mendez M Liu J Longley C Mehlig M Borowski V Viswanathan M Filpula D. Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem, 2006; 17: 618 – 630.
11.    Wang W Kelner DN. Correlation of r-FVIII inactivation with aggregation in solution. Pharm Res.2003: 20 (4): 693-700.
12.    Rosenberg AS. Effects of protein aggregates: An immunologic perspective. AAPSJ.2006; 8 (3): E501-E507.
13.    Ecroyd H Carver JA. The effect of small molecules in modulating the chaperone activity of alpha B-crystallin against ordered and disordered protein aggregation. FEBS J. 2008; 275 (5): 935-947.
14.    Chen BL Arakawa T Morris CF Kenney WC Wells CM Pitt CG. Aggregation pathway of recombinant human keratinocyte growth factor and its stabilization. Pharm. Res. 1994; 11:1581-1587.
15.    Rousseau F Schymkowitz J Serrano L. Protein aggregation and amyloidosis: Confusion of the kinds? Curr. Opin. Struct. Biol. 2006; 16 (1): 118-126.
16.    Chi EY Krishnan S Kendrick BS Chang BS Carpenter JF Randolph TW. Roles of conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony stimulating factor. Protein Sci. 2003; 12 (5): 903-913.
17.    Herman AC Boone TC and Lu HS. Characterization, formulation, and stability of Neupogen (Filgrastim), a recombinant human granulocyte colony-stimulating factor. In formulation, characterization and stability of protein drugs, edited by Pearlman R and Wang YJ. Plenum Press. New York.1996: pp.303-328.
18.    Akash MSH Rehman K Chen S. IL-1Ra and its delivery strategies: inserting the association in perspective. Pharm Res. 2013; 30: 2951–2966.
19.    Jiskoot W Randolph TW Volkin DB Middaugh CR Schoneich C Winter G Friess W Crommelin DJ Carpenter JF. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release. J Pharm Sci. 2012; 101: 946–954.
20.    Jiskoot W van Schie RM Carstens MG Schellekens H. Immunological risk of injectable drug delivery systems. Pharm Res, 2009; 26: 1303–1314.
21.    Lawrence MS Phillips KJ Liu DR. Supercharging proteins can impart unusual resilience. J Am Chem Soc. 2007; 129: 10110–10112.
22.    Schneider CP Trout BL. Investigation of cosolute-protein preferential interaction coefficients: new insight into the mechanism by which arginine inhibits aggregation. J Phys Chem B, 2009; 113: 2050–2058.
23.    Ali B Ibrahim M Hussain I Hussain N Imran M Nawaz H Jan S Khalid M Ghous T Akash MSH Pakistamide C. A new sphingolipid from Abutilon pakistanicum. Rev Bras Farmacogn. 2014; 24: 277–281.
24.    Domach MM Walker LM. Stabilizing biomacromolecules in nontoxic nano-structured materials. J Assoc Lab Autom, 2010; 15: 136–144.
25.    Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973; 181(4096): 223-230.
26.    Onuchic JN LutheySchulten Z Wolynes PG. Theory of protein folding: The energy landscape perspective. Annu Rev Phys Chem, 1997; 48: 545-600.
27.    Pace CN Scholtz JM. Measuring the conformational stability of a protein. In Protein structure: a practical approach, edited by Creighton TE. Oxford: IRL Press.1997: pp. 299-321.
28.    Tanford C. Protein denaturation. Adv. Protein Chem.1968; 23; 121-275.
29.    Von Hippel P H Wong KY. On the conformational stability of globular proteins. J. Biol. Chem. 1965; 240:3909-3923.
30.    Heller MC Carpenter JF Randolph TW. Protein formulation and lyophilization cycle design: Prevention of damage due to freeze-concentration induced phase separation. Biotechnol Bioeng, 1999; 63 (2): 166-174.
31.    Raso SW Abel J Barnes JM Maloney KM Pipes G Treuheit MJ King J Brems DN. Aggregation of granulocyte-colony-stimulating factor in vitro involves a conformationally altered monomeric state. Protein Sci. 2005; 14 (9): 2246 – 2257.
32.    Andrew J Baldwin Tuomas PJ Knowles Gian Gaetano Tartaglia Anthony W Fitzpatrick Glyn L Devlin, Sarah Lucy Shammas Christopher A Waudby Maria F Mossuto Sarah Meehan Sally L Gras John Christodoulou Spencer J Anthony-Cahill Paul D Barker Michele Vendruscolo Christopher M Dobson. Meta-stability of native proteins and the phenomenon of amyloid formation. J. Am. Chem. Soc. 2011: 133 (36):14160–14163.
33.    Yan YB Wang Q He HW Zhou HM. Protein thermal aggregation involves distinct regions: Sequential events in the heat-induced unfolding and aggregation of hemoglobin. Biophys J. 2004; 86 (3): 1682-1690.
34.    Bam NB Cleland JL Randolph TW. Molten globule intermediate of recombinant human growth hormone: Stabilization with surfactants. Biotechnol Prog. 1996; 12 (6): 801-809.
35.    Brange J Andersen L Laursen ED Meyn G Rasmussen E. Toward understanding insulin fibrillation. J Pharm Sci, 1997; 86 (5): 517-525.
36.    Hu D Qin Z Xue B Fink AL Uversky VN. Effect of methionine oxidation on the structural properties, conformational stability, and aggregation of immunoglobulin light chain LEN. Biochemistry (Mosc), 2008; 47 (33): 8665-8677.
37.    Sluzky V Tamada JA Klibanov AM Langer R. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc Natl Acad Sci U S A. 1991; 88:9377-81.
38.    Jaspe J Hagen SJ. Do protein molecules unfold in a simple shear flow? Biophys J. 2006; 91 (9): 3415-3424.
39.    Tzannis ST Hrushesky WJM Wood PA Przybycien TM. Adsorption of a formulated protein on a drug delivery device surface. J Colloid Interface Sci. 1997; 189 (2): 216-228.
40.    Remmele Jr R.L Nightlinger NS Srinivasan S Gombotz WR. Interleukin-1 receptor (IL-1R) liquid formulation development using differential scanning calorimetry. Pharm. Res. 1998; 15:200–208.
41.    Won CM Molnar TE McKean RE Spenlehauer GA. Stabilizers against heat - induced aggregation of RPR 114849, an acidic fibroblast growth factor (AFGF). Int J Pharm. 1998; 167:25-36.
42.    Chiti F Stefani M Taddei N Ramponi G Dobson CM. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature. 2003; 424 (6950): 805-808.
43.    Saluja A Kalonia DS. Nature and consequences of protein - protein interactions in high protein concentration solutions. Int J Pharm. 2008; 358 (1-2):1-15.
44.    Sun Y Hayakawa S. Heat-induced gels of egg white/ovalbumin from five avian species: Thermal aggregation, molecular forces involved and rheological properties. J Agric Food Chem, 2002; 50 (6): 1636-1642.
45.    Bajaj H Sharma VK Badkar A Zeng D Nema S Kalonia DS. Protein structural conformation and not second virial coefficient relates to long-term irreversible aggregation of a monoclonal antibody and ovalbumin in solution. Pharm Res. 2006; 23 (6):1382-1394.
46.    Schein CH. Solubility as a function of protein structure and solvent components. Biotechnology. 1990; 8: 308-317.
47.    Middaugh CR Volkin D B. Protein solubility. In stability of protein pharmaceuticals, edited by Ahern T J and Manning MC. Plenum Press, New York. 1992; 2: pp.109-134.
48.    Giger K Vanam RP Seyrek E Dubin PL. Suppression of insulin aggregation by heparin. Biomacromolecules.2008; 9 (9): 2338-2344.
49.    Schlieben NH Niefind K Schomburg D. Expression, purification, and aggregation studies of His-tagged thermoalkalophilic lipase from Bacillus thermocatenulatus. Protein Expr Purif, 2004; 34 (1): 103-110.
50.    Nema S Washkuhn RJ Brendel RJ. Excipients and their use in injectable products. J. Pharm. Sci Technol.1997; 51:166-171.
51.    Glyakina AV Garbuzynskiy SO Lobanov MY Galzitskaya OV. Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms. Bioinformatics. 2007; 23: 2231-2238.
52.    Kramer RM Shends VR Motl N Pace CP Schlotz JM. Towards molecular understanding of protein solubility: Increased negative charge correlates with increased solubility. Biophysical Journal. 2012; 102:1907-1915.
53.    Dominy BN Minoux H Brooks CL. An electrostatic basis for the stability of thermophilic proteins. Proteins. 2004; 57:128-141.
54.    Kenley RA Warne NW Acid-catalyzed peptide bond hydrolysis of recombinant human interleukin 11. Pharm Res. 1994; 11 (1):72-76.
55.    Van Buren N Rehder D Gadgil H Matsumura M Jacob J. Elucidation of two major aggregation pathways in an IgG2 antibody. J Pharm Sci. 2009; 98 (9):3013-3030.
56.    Paborji M Pochopin NL Coppola WP Bogardus JB. Chemical and physical stability of chimeric L6, a mouse-human monoclonal antibody. Pharm Res. 1994; 11 (5):764–771
57.    Katayama DS Nayar R Chou DK Valente JJ Cooper J Henry CS Vander Velde DG Villarete L Liu CP Manning MC. Effect of buffer species on the thermally induced aggregation of interferon-tau. J Pharm Sci. 2006; 95 (6):1212-1226.
58.    Arnaudov LN de Vries R. Strong impact of ionic strength on the kinetics of fibrilar aggregation of bovine beta-lactoglobulin. Biomacromolecules. 2006; 7 (12): 3490-3498.
59.    Arakawa T Timashef SN. The Interactions of Proteins with Salts, Amino Acids, and Sugars at High Concentration. In Advances in Comparative and Environmental Physiology, Vol. 9, Edited by Gilles R et al. © Springer~ Verlag Berlin Heidelberg.1991: pp. 226-243.
60.    Alan M. Hyde, Susan L. Zultanski, Jacob H. Waldman, Yong-Li Zhong, Michael Shevlin, and Feng Peng. General Principles and Strategies for Salting-Out Informed by the Hofmeister Series. Organic Process Research & Development. 2017; 21 (9): 1355-1370.
61.    Baldwin RL. How Hofmeister ion interactions affect protein stability. Biophys J, 1996; 71 (4): 2056 -2063.
62.    Bam NB Randolph TW Cleland JL. Stability of protein formulations: Investigation of surfactant effects by a novel EPR spectroscopic technique. Pharm Res, 1995; 12 (1): 2-11.
63.    Kerwin, B.A. Polysorbates 20 and 80 used in the formulation of protein bio-therapeutics: structure and degradation pathways. J. Pharm. Sci. 2008; 97: 2924–2935.
64.    Randolph TW Jones LS. Surfactant-protein interactions. Pharm Biotechnol, 2002; 13: 159-175.
65.    Panyukov YV Nemykh MA Rafi kova ER Kurganov BI Yaguzhinsky LS Arutyunyan AM Drachev VA Dobrov EN. Low cetyltrimethyl ammonium bromide concentrations induce reversible amorphous aggregation of tobacco mosaic virus and its coat protein at room temperature. Int J Biochem Cell Biol. 2006; 38 (4): 533-543
66.    Chou DK Krishnamurthy R Randolph TW Carpenter JF Manning MC. Effects of Tween 20 and Tween 80 on the stability of Albutropin during agitation. J Pharm Sci. 2005; 94 (6): 1368-1381.
67.    Bagger HL Ogendal L H Westh P. Solute effects on the irreversible aggregation of serum albumin. Biophys Chem, 2007; 130 (1-2): 17-25.
68.    Kendrick B S Chang BS Arakawa T Peterson B Randolph TW Manning MC Carpenter J F. Preferential exclusion of sucrose from recombinant interleukin-1 receptor antagonist: Role in restricted conformational mobility and compaction of native state. Proc. Natl. Acad. Sci. USA 1997; 94:11917-11922.
69.    Petersen SB Jonson V Fojan P Wimmer R Pedersen S. Sorbitol prevents the self - aggregation of unfolded lysozyme leading to an up to 13 ° C stabilization of the folded form . J Biotechnol. 2004; 114 (3): 269 – 278.
70.    Arakawa T Timasheff SN Stabilization of protein structure by sugars. Biochemistry.1982; 21 (25): 6536-6544.
71.    Foster TM Dormish JJ Narahari U Meyer JD Vrkljan M Henkin J Porter WR Staack H Carpenter JF Manning MC. Thermal stability of low molecular weight urokinase during heat treatment. III. Effect of salts, sugars and Tween 80. J Pharm. 1996; 134 (1-2): 193-201.
72.    Cheng W Joshi SB He F Brems DN He B Kerwin BA, et al. Comparison of high-throughput biophysical methods to identify stabilizing excipients for a model IgG2 monoclonal antibody: conformational stability and kinetic aggregation measurements. J Pharm Sci. 2012; 101(5):1701–20.
73.    Goldberg DS Bishop SM Shah AU Sathish HA. Formulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: role of conformational and colloidal stability. J Pharm Sci. 2011 Apr; 100 (4):1306-15.
74.    He F Woods CE Becker GW Narhi LO Razinkov VI. High-throughput assessment of thermal and colloidal stability parameters for monoclonal antibody formulations. J Pharm Sci. 2011 Dec; 100 (12):5126-41.
75.    Sahin E Grillo AO Perkins MD Roberts CJ. Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies. J Pharm Sci. 2010; 99 (12):4830-48.
76.    Brummitt RK Nesta DP Roberts CJ. Predicting accelerated aggregation rates for monoclonal antibody formulations, and challenges for low-temperature predictions. J Pharm Sci. 2011;100 (10):4234-43.
77.    Brummitt RK Nesta DP Chang L Chase SF Laue TM, Roberts CJ.Nonnative aggregation of an IgG1 antibody in acidic conditions Part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates. J. Pharm. Sci. 2011; 100: 2087-2103
78.    Brummitt RK Nesta DP Chang L Kroetsch AM Roberts CJ. Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms. J Pharm Sci. 2011; 100:2104–2119.
79.    Kayser V Chennamsetty N Voynov V Helk B Forrer K Trout BL. Evaluation of a non-Arrhenius model for therapeutic monoclonal antibody aggregation. J Pharm Sci. 2011 Jul; 100 (7):2526-42.
80.    Li Y Mach H Blue JT High throughput formulation screening for global aggregation behaviors of three monoclonal antibodies. J Pharm Sci. 2011 Jun; 100 (6):2120-35.
81.    Le Brun V Friess W Bassarab S Mühlau S Garidel P A. Critical evaluation of self-interaction chromatography as a predictive tool for the assessment of protein–protein interactions in protein formulation development: a case study of a therapeutic monoclonal antibody. Eur J Pharm Biopharm. 2010; 75 (1):16–25.
82.    Banks DD Latypov RF Ketchem RR Woodard J Scavezze JL Siska CC Razinkov VI. Native-state solubility and transfer free energy as predictive tools for selecting excipients to include in protein formulation development studies. J Pharm Sci. 2012;101 (8):2720-2732.
83.    Concept paper on guideline on immunogenicity assessment of therapeutic proteins. Committee for medical products for human use. European Medicines Agency. Pre-authorization Evaluation of Medicines for Human Use. London, 22 February 2006. Doc. Ref. EMEA/CHMP/BMWP/246511/2005.
84.    Schellekens H. Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin Ther. 2002; 24 (11):1720-1740.
85.    Nandhakumar S, Dhanaraju DM. Clinical Implications of Molecular PEGylation on Therapeutic Proteins. J Basic Clin Pharma. 2017; 8:87-90.
86.    Saini J Sharma PK. Clinical, prognostic and therapeutic significance of heat shock proteins in Cancer. Cur Drug Targets. 2018; 19 (13):1478-1490.
87.    Persson M Andrén Y Mark J Horlings HM Persson F Stenman G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci USA. 2009; 106:18740-18744.
88.    Stransky N Cerami E Schalm S Kim JL Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014; 5:4846.
89.    Yuan L Liu ZH Lin ZR Xu LH Zhong Q Zeng MS. Recurrent FGFR3-TACC3 fusion gene in nasopharyngeal carcinoma. Cancer Biol Ther. 2014; 15:1613-1621
90.    Yoshihara K Wang Q Torres-Garcia W Zheng S Vegesna R Kim H Verhaak RG. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene. 2015; 34:4845-54.
91.    Smallridge AC Chindris AM Asmann YW Casler JD Serie DJ Reddi HV Cradic KW Rivera M, Grebe SK Necela BM et al. RNA sequencing identifies multiple fusion transcripts, differentially expressed genes, and reduced expression of immune function genes in BRAF (V600E) mutant vs BRAF wild-type papillary thyroid carcinoma. J Clin Endocrinol Metab. 2014; 99:338-347
92.    Tang KW Alaei-Mahabadi B Samuelsson T Lindh M Larsson E. The landscape of viral expression and host gene fusion and adaptation in human cancer. Nat Commun. 2013; 4:2513
93.    Chen Z Chen J Gu Y Hu C Li JL Lin S Shen H Cao C Gao R Li J et al. Aberrantly activated AREG-EGFR signalling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene. 2014; 33:3869-3877.
94.    Zhang H Oliveira AM. Fusion genes in epithelial neoplasia. J Clin Pathol. 2010; 63:4-11
95.    Mou Y Xie H Huang X Han W Ni Y,Su H Wang Z Hu Q. Immunological suppression of head and neck carcinoma by dendritic cell tumor fusion vaccine. Oncol Lett. 2013; 6:1799-1803.
96.    Derek A. Escalante He Wang Christopher E Fundakowski. Fusion proteins in head and neck neoplasms: Clinical implications, genetics, and future directions for targeting. Journal of Cancer Biology & Therapy. 2016; 17 (10): 995-1002.
97.    Peter B Stathopulos Guenter A Scholz Young-Mi Hwang Jessica AO Rumfeldt James R Lepock and Elizabeth M Meiering, Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci. 2004; 13 (11): 3017–3027.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available