Author(s):
Farid Wajdi, Indraswari Kusumaningtyas, Andi Rahadiyan Wijaya, Alva Edy Tontowi
Email(s):
alvaedytontowi@ugm.ac.id
DOI:
10.5958/0974-360X.2021.00048.2
Address:
Farid Wajdi1,2, Indraswari Kusumaningtyas1, Andi Rahadiyan Wijaya1, Alva Edy Tontowi1*
1Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Jl. Grafika 2,Yogyakarta, 55281, Indonesia.
2Department of Industrial Engineering, Universitas Serang Raya, Jl. Raya Serang Cilegon KM.5, Serang 42116, Indonesia.
*Corresponding Author
Published In:
Volume - 14,
Issue - 1,
Year - 2021
ABSTRACT:
Graphene is an inorganic nanomaterial that is biocompatible and safe in certain concentration. Since it is proposed as drug delivery or scaffold material, the size of the graphene sheets should be considered for the toxicity in the blood circulation. Permanent damage to cell membranes can occur due to the large size of nanoparticles through binding with cellular membrane proteins. Its synthesis process can modify the size of graphene nanoparticles. This paper presents a graphene synthesis from graphite powder that consider particle size change as induced by sonication. The synthesis was conducted by mechanical exfoliation method using a kitchen blender and a water bath sonicator. The study aimed to predict a safe lateral dimension of graphene nanoparticles. The characterizations were performed by X-Ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR), Transmission Electron Microscopy (TEM), and Particle Size Analysis (PSA). The results showed that prolonged sonication time had caused defects to the graphene layers. The mean of graphene layers lateral decreases from 2973.7 nm to 655 nm after 120‘ sonication time. We proposed a simple regression model of the sonication time (x) to the lateral dimension change (y) and found that we can obtain to obtain a mean graphene lateral dimension of 40 nm after 146‘ sonication.
Cite this article:
Farid Wajdi, Indraswari Kusumaningtyas, Andi Rahadiyan Wijaya, Alva Edy Tontowi. Graphene synthesis in Obtaining a safe particle size in Blood Circulation System. Research J. Pharm. and Tech. 2021; 14(1):270-274. doi: 10.5958/0974-360X.2021.00048.2
Cite(Electronic):
Farid Wajdi, Indraswari Kusumaningtyas, Andi Rahadiyan Wijaya, Alva Edy Tontowi. Graphene synthesis in Obtaining a safe particle size in Blood Circulation System. Research J. Pharm. and Tech. 2021; 14(1):270-274. doi: 10.5958/0974-360X.2021.00048.2 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-1-48
REFERENCES:
1. Younis MA, Bukhari IH, Abbas Q, Bin Talib N, Shaukat S. Synthesis, importance and applications of metal oxide nanomaterials. Int J Technol. 2018;8(2): 49-57.
2. Thodeti S, Reddy SS, Vemula S. Synthesis and characterization of Copper nanoparticles by chemical reduction method. Res J Sci Technol. 2018;10(1):52-57.
3. Mahaparale SP, Kore RS. Silver Nanoparticles: Synthesis, Characterization, Application, Future Outlook. Asian J Pharm Res. 2019;9(3):181-189.
4. Shen H, Zhang L, Liu M, Zhang Z. Biomedical applications of graphene. Theranostics. 2012;2(3):283-294. doi:10.7150/thno.3642
5. Deb A, Vimala R. Graphene mediated drug delivery - A boon to cancer therapy. Res J Pharm Technol. 2017;10 (5):1571-1576. doi:10.5958/0974-360X.2017.00276.1
6. Jayandran M, Muhamed Haneefa, M Balasubramanian V. Synthesis, Characterization and Antimicrobial Activities of Turmeric Curcumin and Curcumin Stabilized Zinc Nanoparticles - A Green Approach. Res J Pharm Technol. 2015;8(4):445-451.
7. Ou L, Song B, Liang H, et al. Toxicity of graphene-family nanoparticles : a general review of the origins and mechanisms. Part Fibre Toxicol. 2016;13(57):1-24. doi:10.1186/s12989-016-0168-y
8. Mytych J, Wnuk M. Nanoparticle Technology as a Double-Edged Sword : Cytotoxic , Genotoxic and Epigenetic Effects on Living Cells. J Biomater Nanobiotechnol. 2013;4(January): 53-63. doi:http://dx.doi.org/10.4236/jbnb.2013.41008
9. Mishra S, Singh G. A Study on Particle Size Distribution Profile of Coal Combustion Residues from Thermal Power Plants of India. Asian J Res Chem. 2010;3(2):386-388.
10. Skoda M, Dudek I, Jarosz A, Szukiewicz D. Graphene: One material, many possibilities - Application difficulties in biological systems. J Nanomater. 2014;2014. doi:10.1155/2014/890246
11. Hu K, Kulkarni DD, Choi I, Tsukruk V V. Progress in Polymer Science Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci. 2014;39(11):1934-1972. doi:10.1016/j.progpolymsci.2014.03.001
12. Raval JP, Patel H V, Patel PS, Patel NH, Desai KR. A Rapid, Convenient Microwave assisted and Conventional Synthesis of novel azetidin-2-one derivatives as Potent Antimicrobial agents. Asian J Res Chem. 2009;2(2):171-177.
13. Navale V, Mokle S, Vibhute AY, et al. Microwave-Assisted Synthesis and Antibacterial Activity of Some New Flavones and 1, 5-Benzothiazepines. Asian J Res Chem. 2009;2(4):472-475.
14. Menéndez JA, Arenillas A, Fidalgo B, Fernández Y, Zubizarreta L, Calvo EG. Microwave heating processes involving carbon materials. 2010;91(1):1-8.
15. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon N Y. 2010;48(7):2118-2122. doi:10.1016/j.carbon.2010.02.001
16. Kim T, Lee J, Lee K-H. Microwave heating of carbon-based solid materials. Carbon Lett. 2014;15(1):15-24. doi:10.5714/ CL.2014.15.1.015
17. Marquardt D, Vollmer C, Thomann R, et al. The use of microwave irradiation for the easy synthesis of graphene-supported transition metal nanoparticles in ionic liquids. 2010;9:0-6. doi:10.1016/j.carbon.2010.09.066
18. Sudeep S, Tathagata D, Somila K, Jyothi Y. Microwave Assisted Synthesis of Fluoro-Pyrazole Derivatives for Antiinflammatory Activity. Res J Pharm Technol. 2011;4(3):413-419.
19. Deepali Gharge, Salve P, Raut C, Pawar K, Dhabale P. Microwave Chemistry: A Review. Asian J Res Chem. 2010;3(1):9-16.
20. Suneetha S, Reddy PBA. Investigation on Graphene Nanofluids and its Applications: A brief Literature Review. Res J Pharm Technol. 2016;9(6):655-663. doi:10.5958/0974-360X.2016.00124.4
21. Paton KR, Varrla E, Backes C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater. 2014;13(6):624-630. doi:10.1038/nmat3944
22. Yi M, Shen Z. Kitchen blender for producing high-quality few-layer graphene. Carbon N Y. 2014; 78:622-626. doi:10.1016/j.carbon.2014.07.035
23. Varrla E, Paton KR, Backes C, Harvey A, Smith RJ, Coleman JN. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale. 2014;6: 11810-11819. doi:10.1039/C4NR03560G
24. Stolyarova EYP, Rim KT, Eom D, et al. Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy Studies of Graphene Films Prepared by Sonication-Assisted Dispersion. 2011:6102-6108. doi:10.1021/nn1009352
25. Sham AYW, Notley SM. A review of fundamental properties and applications of polymer-graphene hybrid materials. Soft Matter. 2013;9(29):6645-6653. doi:10.1039/c3sm00092c
26. Green AA, Hersam MC. Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation. 2009.
27. Jiang F, Yu Y, Wang Y, Feng A, Song L. A novel synthesis route of graphene via microwave assisted intercalation-exfoliation of graphite. Mater Lett. 2017; 200:39-42. doi:10.1016/j.matlet.2017.04.048
28. Kim T, Lee J, Lee KH. Full graphitization of amorphous carbon by microwave heating. RSC Adv. 2016;6(29):24667-24674. doi:10.1039/c6ra01989g
29. Naebe M, Wang J, Amini A, et al. Mechanical Property and Structure of Covalent Functionalised Graphene/Epoxy Nanocomposites. Sci Rep. 2014;4: 1-7. doi:10.1038/srep04375
30. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S. The structure of suspended graphene sheets. 2007;446(March). doi:10.1038/nature05545
31. Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol. 2008;3(9):563-568. doi:10.1038/nnano.2008.215
32. Arao Y, Kubouchi M. High-rate production of few-layer graphene by high-power probe sonication. Carbon N Y. 2015; 95:802-808. doi:10.1016/j.carbon.2015.08.108
33. Barwich S, Khan U, Coleman JN. A technique to pretreat graphite which allows the rapid dispersion of defect-free graphene in solvents at high concentration. J Phys Chem C. 2013;117(37):19212-19218. doi:10.1021/jp4047006
34. Khan U, Neill AO, Lotya M, De S, Coleman JN. High-Concentration Solvent Exfoliation of Graphene. 2010;(7):864-871. doi:10.1002/smll.200902066
35. Yi M, Shen Z, Zhang X, Ma S. Vessel diameter and liquid height dependent sonication-assisted production of few-layer graphene. J Mater Sci. 2012;47 (23):8234-8244. doi:10.1007/s10853-012-6720-8
36. Smith RJ, Lotya M, Coleman JN. The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New J Phys. 2010;12 (125008). doi:10.1088/1367-2630/12/12/ 125008
37. Khan U, Porwal H, Neill AO, Nawaz K, May P, Coleman JN. Solvent-Exfoliated Graphene at Extremely High Concentration. 2011:9077-9082. doi:10.1021/la201797h