ABSTRACT:
The rhizome of Zingiber officinale and the fruit of Terminalia chebula are widely used in traditional foods and medicines. This particular combination holds great significance in most ayurvedic formulations. However, studies on the bioaccessibility of this combination are yet to be elucidated. Thus in the present study, we aimed to evaluate the polyphenolic content, antioxidant activity and a-glucosidase inhibition before and after gastro-intestinal digestion. The bioaccessible fraction of total phenolic and flavonoid contents after intestinal digestion was found to be 46% and 33% respectively. Quantification of individual bioactive compounds present in the extract (6-shogaol, gallic acid, ellagic acid, corialgin, chebulinic acid, and chebulagic acid) was estimated by high-performance liquid chromatography. The antioxidant capacity was increased and the inhibition of a-glucosidase was reduced after intestinal digestion when compared to gastric digestion. Overall, the results indicated the bioaccessibility of polyphenols after gastro-intestinal digestion and its bioactivity, which needs to be further studied to understand the stability of bioactive compounds. This finding is valuable for food technologists and alternative medicine practitioners to lay the foundation to know the effects and bioactivity of foods and herbs upon gastro-intestinal digestion.
Cite this article:
Jayasindu Mathiyazhagan, K.M. Gothandam. In vitro Gastro-intestinal digestion of combined Zingiber officinale and Terminalia chebula associated with Antioxidant capacity and α-Glucosidase Inhibition. Research J. Pharm. and Tech. 2021; 14(1):37-41. doi: 10.5958/0974-360X.2021.00007.X
Cite(Electronic):
Jayasindu Mathiyazhagan, K.M. Gothandam. In vitro Gastro-intestinal digestion of combined Zingiber officinale and Terminalia chebula associated with Antioxidant capacity and α-Glucosidase Inhibition. Research J. Pharm. and Tech. 2021; 14(1):37-41. doi: 10.5958/0974-360X.2021.00007.X Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-1-7
REFERENCES:
1. Bartley JP and Jacobs AL. Effects of drying on flavour compounds in Australian-grown ginger (Zingiber officinale). Journal of the Science of Food and Agriculture. 2000; 80:209–215.
2. Stoilova I, Krastanov A, Stoyanova A, Denev P GS. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chemistry. 2007;102(3):764–770. doi: 10.1016/j.foodchem.2006.06.023
3. Rajurkar RM, Jain RG BP and KS. Antioxidant Activity of Phenolic Extract from Ginger (Zingiber officinale Roscoe) Rhizome. Asian Journal of research in Chemistry. 2009;2(3):260–261.
4. Rungsung W, Dutta S, Mondal DN, Hazra J. Pharmacognostical Characterization on the Rhizome of Ginger. 2014;6(June):88–91.
5. Devangamath B, Raddi S. A Randomized Control Trial to Assess the Efficacy of Dry Ginger Powder on Management of Nausea and Vomiting Among Antenatal Mothers Attending Selected Urban Health Centres of Belgaum, Karnataka – One Group Pretest Post Test Pre Experimental Study. Asian Journal of Nursing Education and Research. 2016;6(1):17. doi:10.5958/2349-2996.2016.00005.7
6. Deepa R. Ginger Rhizome Powder on Dysmenorrhea. International Journal of Advances in Nursing Management. 2016;4(4):417. doi:10.5958/2454-2652.2016.00092.5
7. Padmavathi MP, Sankar R, Kokilavani N. Research Article A Study to Assess the Effectiveness of Ginger Powder on Dysmenorrhoea among Adolescents in a Selected School at Erode. 2012; 2(June):79–82.
8. Platel K and Srinivasan K. Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. Nahrung - Food. 2000;44(1):42–46. doi:10.1002/(SICI)1521-3803(20000101)44:1<42: AID-FOOD42>3.0.CO;2-D
9. Naidu N, Kumar GS, Sivakrishna K, Anjinaik K, Kumar LP, Sneha G. Anti microbial and antioxidant evolution of aqueous extract of Terminalia chebula using disc diffusion, H2O2 scavenging methods. Asian Journal of Research in Pharmaceutical Science. 2017;7(2):112. doi:10.5958/2231-5659.2017.00017.0
10. Johnson DB, Sai KP, Verma MA TS. Antimutagenic Activity of Terminalia chebula Fruit Extract. Research Journal of Pharmacognosy and Phytochemistry. 2010;2(6):459–463.
11. Dell’ Agli M, Galli GV, Bulgari M, Basilico N, Romeo S, Bhattacharya D, Taramelli D BE. Ellagitannins of the fruit rind of pomegranate (Punica granatum) antagonize in vitro the host inflammatory response mechanisms involved in the onset of malaria. Malaria Journal. 2010;9(1):1–9. doi:10.1186/1475-2875-9-208
12. Jayakumari S, Ravichandiran V. Inhibitory effect Terminalia chebula, Sida rhombifolia, Leucas cephalotes on inflammatory key enzymes. Research Journal of Pharmacy and Technology. 2017;10(1):233–238. doi:10.5958/0974-360X.2017. 00049. X
13. Vaghela JS, Sisodia SS. In vitro antioxidant activity of Terminalia chebula fruit extracts. Research Journal of Pharmacy and Technology. 2011;4(12):1835–1843.
14. Konduri MKR, Bogolu VR. Evaluation of antioxidant activities of two medicinal plants, Terminalia chebula and Adhatoda vasica belonging to Bapatla, India. Research Journal of Pharmacy and Technology. 2015;8(2):194–197. doi:10.5958/0974-360X.2015.00035.9
15. Olennikov DN, Kashchenko NI, Chirikova NK. In vitro bioaccessibility, human gut microbiota metabolites and hepatoprotective potential of chebulic ellagitannins: A case of padma Hepaten® formulation. Nutrients. 2015;7(10):8456–8477. doi:10.3390/nu7105406
16. Mehra R, Makhija R, Vyas N. Role of Terminalia chebula on gastrointestinal mucosa. Research Journal of Pharmacy and Technology. 2012;5(9):1183–1186.
17. Thakkur CG. Introduction to Ayurveda, the science of life. Red Wheel/Weiser; 1974.
18. Minekus M, Alminger M, Alvito P, Ballance S, Bohn TO, Bourlieu C, Carriere F, Boutrou R, Corredig M, Dupont D DC. A standardised static in vitro digestion method suitable for food-an international consensus. Food and Function. 2014;5(6):1113–1124. doi:10.1039/c3fo60702j
19. Pellegrini M, Lucas-Gonzalez R, Sayas-Barberá E, Fernández-López J, Pérez-Álvarez JA V-MM. Bioaccessibility of Phenolic Compounds and Antioxidant Capacity of Chia (Salvia hispanica L.) Seeds. Plant Foods for Human Nutrition. 2017;73(1):47–53. doi:10.1007/s11130-017-0649-7
20. Kaur C and Kapoor HC. Anti-oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science & Technology. 2002;37(2):153–161.
21. Saravana Guru MM, Vasanthi M, Achary A. Antioxidant and free radical scavenging potential of crude sulphated polysaccharides from Turbinaria ornata. Biologia (Poland). 2015;70(1):27–33. doi:10.1515/biolog-2015-0004
22. González-Muñoz A, Quesille-Villalobos AM, Fuentealba C, Shetty K, Gálvez Ranilla L. Potential of Chilean native corn (Zea mays L.) accessions as natural sources of phenolic antioxidants and in vitro bioactivity for hyperglycemia and hypertension management. Journal of Agricultural and Food Chemistry. 2013;61(46):10995–11007. doi:10.1021/jf403237p
23. Goñi I, Díaz-rubio ME, Pérez-jiménez J, Saura-calixto F. Towards an updated methodology for measurement of dietary fiber, including associated polyphenols, in food and beverages. Food Research International. 2009; 42(7):840–846. doi:10.1016/j.foodres.2009.03.010
24. Prakash J. Chemical composition and antioxidant properties of ginger root (Zingiber officinale). Journal of Medicinal Plants Research. 2010;4(24):2674–2679. doi:10.5897/JMPR09.464
25. Saura-Calixto F. Dietary Fiber as a Carrier of Dietary Antioxidants : An Essential Physiological Function. Journal of Agricultural and Food Chemistry. 2011; 59:43–49. doi:10.1021/jf1036596
26. Ovando-Martínez M, Gámez-Meza N, Molina-Domínguez CC, Hayano-Kanashiro C M-J LA. Simulated Gastrointestinal Digestion, Bioaccessibility and Antioxidant Capacity of Polyphenols from Red Chiltepin (Capsicum annuum L. Var. glabriusculum) Grown in Northwest Mexico. Plant Foods for Human Nutrition. 2018;73(2):116–121.
27. Bouayed J, Hoffmann L, Bohn T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry. 2011;128(1):14–21. doi:10.1016/j.foodchem.2011.02.052
28. Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, Mena P, Del Rio D CA. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Archives of Toxicology. 2014;88: 1803–1853. doi:10.1007/s00204-014-1330-7
29. Espín JC, Larrosa M, García-Conesa MT T-BF. Biological Significance of Urolithins, the Gut Microbial Ellagic Acid-Derived Metabolites: The Evidence So Far. Evidence-Based Complementary and Alternative Medicine. 2013;2013: 15. doi:http://dx.doi.org/10.1155/2013/270418
30. Ortega N, Reguant J, Romero MP, Macia A MM. Effect of Fat Content on the Digestibility and Bioaccessibility of Cocoa Polyphenol by an in Vitro Digestion Model. Journal of Agricultural and Food Chemistry. 2009;57: 5743–5749. doi:10.1021/jf900591q
31. Ortega N, Macià A, Romero MP, Reguant J MM. Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model. Food Chemistry. 2011;124: 65–71. doi:10.1016/j.foodchem.2010.05.105
32. AG HBB. Pharmacology of a-glucosidase inhibition. European Journal of Clinical Investigation. 1994; 24:3–10.
33. Priya Rani M, Padmakumari KP, Sankarikutty B, Lijo Cherian O, Nisha VM RK. Inhibitory potential of ginger extracts against enzymes linked to type 2 diabetes, inflammation and induced oxidative stress. International Journal of Food Sciences and Nutrition. 2011;62(March):106–110. doi:10.3109/09637486.2010.515565
34. Gao H, Huang Y, Xu P, Kawabata J. Food Chemistry Inhibitory effect on a -glucosidase by the fruits of Terminalia chebula Retz. Food Chemistry. 2007; 105:628–634. doi: 10.1016/j.foodchem. 2007.04.023