Author(s): Nastiti Faradilla Ramadhani, Alexander P. Nugraha, Igo S. Ihsan, Yoni A. Agung, Fedik A. Rantam, Diah S. Ernawati, Rini D. Ridwan, Ida B. Narmada, Arif N. M. Ansori, Suhaila Hayaza, Tengku N.E.B.T.A. Noor

Email(s): alexander.patera.nugraha@fkg.unair.ac.id

DOI: 10.52711/0974-360X.2021.00911   

Address: Nastiti Faradilla Ramadhani1,2, Alexander P. Nugraha1,2,3*, Igo S. Ihsan4, Yoni A. Agung5, Fedik A. Rantam6, Diah S. Ernawati7, Rini D. Ridwan8, Ida B. Narmada2,3, Arif N. M. Ansori9, Suhaila Hayaza10, Tengku N.E.B.T.A. Noor11
1Graduate Student of Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Dental and Biomaterial Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
3Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
4Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Surabaya, Indonesia.
5Dental Medicine Research Center, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
6Laboratory of Virology, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.
7Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indones

Published In:   Volume - 14,      Issue - 10,     Year - 2021


ABSTRACT:
The gingival medicinal signaling cells conditioned medium (GMSCs-CM) is a biocompatible material which possessed beneficial cytokine, anti-microbial peptide, growth factor that can be collected after culture. GMSCs- CM may inhibit bone resorption in order to improve the patient’s quality of life. In this study, the potential effect of GMSCs-CM on the number of osteoclasts and osteoblasts in Lipopolysaccharide (LPS)-induced calvaria bone resorption in wistar rats (Rattus novergicus) has been analyzed. Twenty-eight male and healthy wistar rats (R. novergicus) at the age of 1-2 months old with 250-300 grams body weight were divided into 4 groups, namely PBS group: 100µg PBS day 1-7; LPS group: 100µg LPS day 1-7; LPS and GMSCs group: 100µg LPS + 100µg GMSCS-CM day 1 1-7, GMSCs group: 100µg M-GMSCs day 1-7. Escherichia Coli LPS was used to induce the bone resorption on the calvaria with subcutaneous injection. GMSCs-CM was collected after passage 4-5 then injected subcutaneously on the calvaria. All samples were examined on the. 8th day through cervical dislocation. The number of osteoblasts and osteoclasts in calvaria was then observed under 400x magnification. One Way ANOVA and Tukey HSD were conducted to analyze differences between groups (p<0.01). The number of osteoclasts in calvaria decreased significantly in the LPS + GMSCs-CM group compared to LPS group (p<0.01). The number of osteoblasts in calvaria increased significantly in the LPS + GMSCs-CM group compared to LPS group (p<0.01). GMSCs-CM can reduce the amount of osteoclast significantly and increases the production of osteoblast in LPS-induced calvaria bone resorption in wistar rats (R. novergicus).


Cite this article:
Nastiti Faradilla Ramadhani, Alexander P. Nugraha, Igo S. Ihsan, Yoni A. Agung, Fedik A. Rantam, Diah S. Ernawati, Rini D. Ridwan, Ida B. Narmada, Arif N. M. Ansori, Suhaila Hayaza, Tengku N.E.B.T.A. Noor. Gingival Medicinal Signaling Cells Conditioned Medium effect on the Osteoclast and Osteoblast number in Lipopolysaccharide-induced Calvaria Bone Resorption in Wistar Rats’ (Rattus novergicus). Research Journal of Pharmacy and Technology. 2021; 14(10):5232-7. doi: 10.52711/0974-360X.2021.00911

Cite(Electronic):
Nastiti Faradilla Ramadhani, Alexander P. Nugraha, Igo S. Ihsan, Yoni A. Agung, Fedik A. Rantam, Diah S. Ernawati, Rini D. Ridwan, Ida B. Narmada, Arif N. M. Ansori, Suhaila Hayaza, Tengku N.E.B.T.A. Noor. Gingival Medicinal Signaling Cells Conditioned Medium effect on the Osteoclast and Osteoblast number in Lipopolysaccharide-induced Calvaria Bone Resorption in Wistar Rats’ (Rattus novergicus). Research Journal of Pharmacy and Technology. 2021; 14(10):5232-7. doi: 10.52711/0974-360X.2021.00911   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-10-29


REFERENCES
1.    Eriksen EF. Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord. 2010; 11:219–227.2
2.    Boyce BF, Li J, Xing L, Yao Z. Bone Remodeling and the Role of TRAF3 in Osteoclastic Bone Resorption, Frontiers in Immunolog 2018; 9:2263.
3.    Crotti TN, Dharmapatni AA, Alias E, Haynes DR. Osteoimmunology: Major and Costimulatory Pathway Expression Associated with Chronic Inflammatory Induced Bone Loss, Journal of Immunology Research 2015; 281287.
4.    Teitelbaum SL. Bone resorption by osteoclasts, Science. 2000; 289: 1504-1508.
5.    Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. The Journal of Biological Chemistry 2000; 275: 4858- 4864.
6.    Hermawan RW, Narmada IB, Djaharu’ddin I, Nugraha AP, Rahmawati D. The Influence of Epigallocatechin Gallate on the Nuclear Factor Associated T Cell-1 and Sclerostin Expression in Wistar Rats (Rattus novergicus) during the Orthodontic Tooth Movement. Research J. Pharm. and Tech. 2020; 13(4):1730-1734.
7.    Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, K. Yamaguchi, N. Shima, H. Yasuda, T. Morinaga, K. Higashio, T.J. Martin, T. Suda, Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction, The Journal of Experimental Medicine 191 (2000) 275-286.
8.    Kitaura H, Zhou P, Kim DV, Novack FP, Ross SL, Teitelbaum. M-CSF mediates TNF-induced inflammatory osteolysis, The Journal of Clinical Investigation 2005; 115:3418-3427.
9.    Narmada IB, Husodo KRD, Ardani IGAW, Rahmawati D, Nugraha AP, Iskandar RPD. Effect of Vitamin D during Orthodontic Tooth Movement on Receptor Activator of Nuclear Factor Kappa-B Ligand Expression and Osteoclast Number in Pregnant Wistar Rat (Rattus novergicus). JKIMSU 2019; 8(1): 38-42.
10.    Nugraha AP, Rezkita F, Puspitaningrum MS, Luthfimaidah MS, Narmada IB, Prahasanti C, Ernawati DS, Rantam FA. Gingival Mesenchymal Stem Cells and Chitosan Scaffold to Accelerate Alveolar Bone Remodelling in Periodontitis: A Narrative Review. Research J. Pharm. and Tech 2020; 13(5):2502-2506.
11.    Rezkita F, Wibawa KGP, Nugraha AP. Curcumin loaded Chitosan Nanoparticle for Accelerating the Post Extraction Wound Healing in Diabetes Mellitus Patient: A Review. Research J. Pharm. and Tech. 13(2): 1039-1042.
12.    Yani S, Soeharto S, Sumarno, Kalim H. The Effect of Eleutherine americana Merr. Extract on Expression Changes of MMP-8 and Type 1 Collagen in Periodontitis Rat Models. Research J. Pharm. and Tech 2020; 13(5):2407-2412.
13.    Mohanty S, Pal A, Si SC. Flavonoid as Nutraceuticals: A Therapeutic approach to Rheumatoid Arthritis. Research J. Pharm. and Tech 2020; 13(2):991-998.
14.    Puspitaningrum MS, Rahmadahani D, Rizqianti Y, Ridwan RD, Ansori ANM, Fadholly A, Susilo RJK, Ramadhani NF, Nugraha AP. The Combination of Epigallocatechin-3-Gallate and Platelet Rich Plasma In Periodontal Ligament Stem Cells for Jaw Osteomyelitis Therapy: A Review. Biochem. Cell. Arch. 2020; 20(Supplement 1): 3015-3021.
15.    Rezkita F, Sarasati A, Wijaya FN, Nugraha Ap, Hendrijantini N, Ridwan RD, Ramadhani NF, Fadholly, Ansori ANM, Susilo RJK. Chitosan Scaffold, Concentrated Growth Factor and Gingival Mesenchymal Stem Cells as the Osteoporotic Jaw Therapy: A Review Biochem. Cell. Arch. 2020; 20(Supplement 1): 2913- 2919.
16.    Braun T, Schett G. Pathways for bone loss in inflammatory disease. Curr Osteoporos Rep. 2012; 10:101–108.
17.    Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: Keystones, pathobionts, and host response. Trends Immunol. 2014; 35:3–11.
18.    Shaw AT, Gravallese EM. Mediators of inflammation and bone remodeling in rheumatic disease. Semin Cell Dev Biol. 2016; 49:2–10.
19.    Redlich K, Smolen JS. Inflammatory bone loss: Pathogenesis and therapeutic intervention. Nat Rev Drug Discov. 2012; 11:234–250.
20.    Lotfinia M, Kadivar M, Piryaei A, Pournasr B, Sardari S, Sodeifi N, Sayahpour FA, Baharvand H. Effect of secreted molecules of human embryonic stem cell-derived mesenchymal stem cells on acute hepatic failure model. Stem Cells Dev. 2016; 25:1898–1908.
21.    Nugraha AP, Purwati, Susilowati H, Hendrianto E, Karsari D, Ertanti N, Dinaryanti A, Ihsan IS, Narmada BN, Ernawati DS, FA Rantam. Medicinal Signaling Cells Metabolite Oral Based as a Potential Biocompatible Biomaterial Accelerating Oral Ulcer Healing (In Vitro Study). Eur J Dent. 2019; 13(3):432–436.
22.    Puspitaningrum MS, Rahmadahani D, Rizqianti Y, Ridwan RD, Ansori ANM, Fadholly A, Susilo RJK, Narmada IB, Ramadhani NF, Nugraha AP. Freeze-Dried Epigallocatechin-3-Gallate and Stem-Cells from Human Exfoliated Deciduous-Teeth Scaffold as The Biocompatible Anti-Relapse Material Post-Orthodontic Treatment: A Review. Biochem. Cell. Arch. 2020; 20 (Supplement 1): 2935- 2942.
23.    Suciadi SP, Nugraha AP, Ernawati DS, Ayuningtyas NF, Narmada IB, Prahasanti C, Dinaryanti A, Ihsan IS, Hendrianto E, Susilowati H, Rantam FA. The Efficacy of Human Dental Pulp Stem Cells in regenerating Submandibular Gland Defects in Diabetic Wistar Rats (Rattus novergicus). Research J. Pharm. and Tech. 2019; 12(4): 1573-1579.
24.    Somoza R A, Correa D, Caplan A I. The role of mesenchymal stem cells as medicinal signaling cells. Nature protocol and recipe for researchers. Nat Protoc. 2017; 11(01):1.
25.    Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med. 2014; 12:260.
26.    Wakayama H,   Hashimoto   N,   Matsushita   Y,   Matsubara   K, Yamamoto N, Hasegawa Y, Ueda M, Yamamoto A. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice. Cytotherapy. 2015; 17:1119– 1129.
27.    Rantam FA, Nugraha AP, Ferdiansyah F, Purwati P, Bumi C, Susilowati H, Hendrianto E, utomo DN, Suroto H, Sumartono C, Setiawati R, Prakoeswa CR, Indramaya DM. A Potential Differentiation of Adipose and Hair Follicle-derived Mesenchymal Stem Cells to Generate Neurons Induced with EGF, FGF, PDGF and Forskolin. Research J. Pharm. and Tech. 2020; 13(1): 275- 281.
28.    Chen YX, Zeng ZC, Sun J, Zeng HY, Huang Y, Zhang ZY. Mesenchymal stem cell-conditioned medium prevents radiation- induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. J Radiat Res. 2015; 56:700–708.
29.    Liu J, Han Z, Han Z, He Z. Mesenchymal stem cell-conditioned media suppresses inflammation-associated overproliferation of pulmonary artery smooth muscle cells in a rat model of pulmonary hypertension. Exp Ther Med. 2016; 11:467–475.
30.    Bermudez MA, Sendon-Lago J, Seoane S, Eiro N, Gonzalez F, Saa J, Vizoso F, Perez-Fernandez R. Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis. Exp Eye Res. 2016; 149:84–92.
31.    Nugraha AP, Narmada IB, Ernawati DS, Widodo DWW, Lestari P, Dinaryanti A, Hendrianto E, Ihsan IS, Susilowati H. Gingival Mesenchymal Stem Cells from Wistar Rat’s Gingiva (Rattus Novergicus) – Isolation and Characterization (In Vitro Study). J Int Dent Med Res 2018; 11(2):694-699
32.    Nugraha AP, Rezkita F, Putra KG, Narmada IB, Ernawati DS, Rantam FA. Triad Tissue Engineering: Gingival Mesenchymal Stem Cells, Platelet Rich Fibrin and Hydroxyapatite Scaffold to ameliorate Relapse Post Orthodontic Treatment. Biochem. Cell. Arch. 2019; 19(2):3689-3693.
33.    Xing Q, de Vos P, Faas MM, Ye Q, Ren Y. LPS promotes pre- osteoclast activity by up-regulating CXCR4 via TLR-4. Journal of Dental Research 2011; 90:157-162.
34.    Islam S, Hassan F, Tumurkhuu G, Dagvadorj J, Koide N, Naiki Y, Mori I, Yoshida T, Yokochi T. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells, Biochemical and Biophysical Research Communications. 2007; 360:346-351.
35.    Mormann M, Thederan M, Nackchbandi I, Giese T, Wagner C, Hansch GM. Lipopolysaccharides (LPS) induce the differentiation of human monocytes to osteoclasts in a tumour necrosis factor (TNF) alpha-dependent manner: a link between infection and pathological bone resorption, Molecular Immunology 2008; 45: 3330-3337.
36.    Zou W, Bar-Shavit Z. Dual modulation of osteoclast differentiation by lipopolysaccharide, Journal of bone and mineral research. the official journal of the American Society for Bone and Mineral Research 2002; 17:1211-1218.
37.    Kimura K, Kitaura H, Fujii T, Hakami ZQ, Takano-Yamamoto T. Anti-c-Fms antibody inhibits lipopolysaccharide-induced osteoclastogenesis in vivo, FEMS Immunology and Medical Microbiology 2012; 64: 219-227.
38.    Abood FA, Conserv GADH, Witwi LJ, Hindi NKK, Khmra HKAA, Ali MRA. The occurrence of alveolar bone resorption with oral bacterial infection. Research J. Pharm. and Tech. 2017; 10(6): 1997-2000.
39.    Wu H, Hu B, Zhou X. et al. Artemether attenuates LPS-induced inflammatory bone loss by inhibiting osteoclastogenesis and bone resorption via suppression of MAPK signaling pathway. Cell Death Dis. 2018; 9: 498.
40.    Kato H, Taguchi Y, Tominaga K, Umeda M, Tanaka A. Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells. Arch Oral Biol. 2014; 59(2):167- 75.
41.    Guo C, Yuan L, Wang J. et al. Lipopolysaccharide (LPS) Induces the Apoptosis and Inhibits Osteoblast Differentiation Through JNK Pathway in MC3T3-E1 Cells. Inflammation 2014; 37: 621–631.
42.    Venkatesh D, Kumar K and Alur JB. Gingival mesenchymal stem cells, Journal of Oral and Maxillofacial Pathology 2017; 21(1):30– 35.
43.    Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death and Disease 2016; l7: e2062.
44.    Trubiani O, Marconi GD, Pierdomenico SD, Piattelli A, Diomede F, Pizzicannella J. Human Oral Stem Cells, Biomaterials and Extracellular Vesicles: A Promising Tool in Bone Tissue Repair. Int J Mol Sci. 2019; 20(20):4987.
45.    Ghaderi H, Razmkhah M, Kiany F, Chenari N, Haghshenas MR, Ghaderi A. Comparison of Osteogenic and Chondrogenic Differentiation Ability of Buccal Fat Pad Derived Mesenchymal Stem Cells and Gingival Derived Cells. J Dent (Shiraz) 2018; 19(2):124–131.
46.    Kikuchi T, Matsuguchi T, Tsuboi N, Mitani A, Tanaka S, Matsuoka M, Yamamoto G, Hishikawa T, Noguchi Y. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors, Journal of Immunology 2001; 166:3574-3579.
47.        Cho KA, Park M, Kim YH, Ryu KH, Woo SY. Mesenchymal stem cells inhibit RANK-RANKL interactions between osteoclasts and Th17 cells via osteoprotegerin activity. Oncotarget. 2017; 8(48):83419-83431.
48.    Li Y, Gao X, Wang J. Human adipose-derived mesenchymal stem cell-conditioned media suppresses inflammatory bone loss in a lipopolysaccharide-induced murine model. Experimental and Therapeutic Medicine. 2018; 15(2):1839-1846.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available