ABSTRACT:
This study was aimed at the development of natamycin loaded nano-structured lipid carriers (NLCs) and their characterization for physicochemical properties i.e., Fourier Transform Infrared (FTIR), UV-Visible spectroscopy, meting point, solubility pro?le and partition coe?cient. FTIR and Di?erential Scanning Calorimetry (DSC) permit the characterization of the drug, excipients and binary mixture and thus assisted in predicting the compatibility of natamycin with other excipients. Lipid screening for formulation of NLCs were performed by their solubility and drug affinity studies. High homogenization and sonication method was employed for the development of natamycin loaded NLCs and it was characterized for vesicle size, zeta potential, % entrapment e?ciency, viscosity, pH and percentage drug release up to 12 h.
Cite this article:
Ishwari Choudhary, Preeti K. Suresh. A Logical Approach to Development of Natamycin Loaded NLCs: Preformulation Studies, Formulation Development and In Vitro Characterization. Research Journal of Pharmacy and Technology. 2021; 14(11):6033-0. doi: 10.52711/0974-360X.2021.01021
Cite(Electronic):
Ishwari Choudhary, Preeti K. Suresh. A Logical Approach to Development of Natamycin Loaded NLCs: Preformulation Studies, Formulation Development and In Vitro Characterization. Research Journal of Pharmacy and Technology. 2021; 14(11):6033-0. doi: 10.52711/0974-360X.2021.01021 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-11-74
REFERENCES:
1. Han CT, Wang PY, Lin IC, Huang H, Sheung LG, Li Tseng C. Review Ocular Drug Delivery: Role of Degradable Polymeric Nanocarriers for Ophthalmic Application. Int. J. Mol. Sci. 2018;19: 1-20.doi:10.3390/ijms19092830
2. Bhatta RS, Chandasana H, Chhonker YS, Rathi C, Kumar D, Mitra K, Shukla PK. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: In vitro and pharmacokinetics studies. Int J of Pharmaceutics. 2012; 432:105-112.
3. Namperumalsamy V, Prajna L, Mascarenhas J, Krishnan T, Reddy PR, Srinivasan M, Vaitilingam CM, Hong KC, Lee SM, McLeod SD, Zegans ME, Porco TC, Lietman TM, Acharya NR. Comparison of Natamycin and Voriconazole for the Treatment of Fungal Keratitis.ArchOphthalmol.2010;128(6):672-678.
4. Garg P. Fungal, Mycobacterial, and Nocardia infections and the eye: an update. Fungi, atypical Mycobacteria, and Nocardia are important causes of ocular infections.2012; 26,245–251.
5. Srinivasan M. Fungal keratitis. Curr Opin Ophthalmol. 2004;15(4):321-327.
6. Ahmed K, Mohammad AK, Mohamed el-B, Ahmed el-N. Natamycin solid lipid nanoparticles – sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization. Int J of Nanomedicine. 2019;14 :2515–2531.
7. Garg P, Gopinathan G, Choudhary K, Gullapalli N. Keratomycosis: clinical and microbiologic experience with dematiaceous fungi. J American Academy of Ophthalmogy. 2000; 107:574-580.
8. Thomas LV, Broughton JD. Encyclopedia of Food Sciences and Nutrition.2003(2) available on https://www.sciencedirect.com/topics/neuroscience/natamycin
9. Tian Fu, Jinglin Yi, SongyiLv, Zhang Fu TB, Yi J, Songyi L, Zhang B. Ocular amphotericin B delivery by chitosan modified nanostructured lipid carriers for fungal keratitis targeted therapy. J of Liposome Research. 2016:1-20.
10. Negi LM, Jaggi M, Talegaonkar S. Development of protocol for screening the formulation components and the assessment of common quality problems of nano-structured lipid carriers. Int J of Pharmaceutics.2014;461:403-410.
11. Beloqui A, Solinis M, Gascon AR, Almeida AJ, Preat V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. J of Advanced Drug Delivery and Biomaterials. 2015:1-11.
12. Thomas AH, Analysis and Assay of Polyene Antifungal Antibiotics A Review. 1976; 101: 321-330.
13. Cerrato PR, Pazos OP, Quiros De AR-B, Sendón R, Angulo I, Losada PP. Rapid method to determine natamycin by hplc-dad in food samples for compliance with eu food legislation. Food Control, 2013. 33 (1): 262-267.
14. Zeng X, Michael DK, Jing K,WaiWooM, Dong CX, Youping X, Yinghua L. Solubility Properties and Diffusional Extraction Behavior of Natamycin from Streptomyces gilvosporeus Biomass. American Institute of Chemical Engineers Biotechnol. 2013; 29: 109-115.doi 10.1002/btpr.1659 2012
15. Lachman L, Liberman HA and Kanig JL: Preformulation. In The Teory and Practice of Industrial Pharmacy,reprinted by India by special arrangement with LEA and FEBIGER Philiadelphia U.S.A.. 1985; 3rd ed: pp. 171-196.
16. Badhani A, Dabral P, Rana V, Upadhyaya K. Evaluation of cyclodextrins for enhancing corneal penetration of natamycin eye drops. Journal of Pharmacy andBioallied Sciences. 2012;4-29-30.
17. Brik H. Natamycin. Analytical Profiles of Drug Substances. Elsevier. 1981.
18. Vodithala S, Khatry S, Shastri N, Sadanandam M. Development and evaluation of thermoreversible ocular gels of ketorolac tromethamine. Int J of Biopharmaceutics. 2010; 1(1): 39-45.
19. Yadagiri P, Korapati RR. Formulation, Characterization and In Vitro Evaluation of Lamivudine Microspheres. Asian J. Res. Pharm. Sci. 2016; 6(4): 235-239. DOI: 10.5958/2231-5659.2016.00033.3
20. Kumar K, Singh BK. Synthesis, Characterization and anti-Microbial activity of Some 4-Thiazolidinone Conjugatives Asian J. Pharm. Ana. 2020; 10(4):195-200. DOI: 10.5958/2231-5675.2020.00036.8
21. El-Ridy MS, Yehia SA, Kassem MA, Mostafa DM, Nasr EA, Asfour MH. Niosomal encapsulation of ethambutol hydrochloride for increasing its efficacy and safety. Drug Delivery. 2015;22-(1)-21-36.
22. Hajare AA and Patil VA. Formulation and Characterization of Metformin Hydrochloride Floating Tablets. Asian J. Pharm. Res. 2012; Vol. 2: Issue 3, Pg 111-117.
23. Saindane DS, Kulkarni AS, Sagri AN, Pimprikar RB, Yeshwante SB, Suryawanshi CP, Firke SD, Kale MK. Physicochemical Characterization of Solid Dispersion of Cefexime with Poloxamer 188. Research J. Pharma. Dosage Forms and Tech. 2009; 1(2): 162-166
24. Gaba B, Mohammad F, Khan S, Ali A, Sanjula B, Ali J. Nanostructure lipid carrier system for topical delivery of terbinafine hydrochloride. Bulletin of Faculty of Pharmacy, Cairo University. 2015; 53:147-159.
25. Eszter LK, Berko S, Gacsi A, Kovacs A, Katona G, Soos J, Csanyi E, Grof I, Harazin A, Deli MA, Budai SB. Design and Optimization of Nanostructured Lipid Carrier Containing Dexamethasone for Ophthalmic Use. Int J of Pharmaceutics. 2019;11;679;1-18. doi:10.3390/pharmaceutics11120679
26. Lopez S, Espina M, Doktorovova S, Souto EB, García ML. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye Part I Barriers and determining factors in ocular delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2017; 110:70–75.
27. Suresh PK, Sah A, Patent Perspectives for Corticosteroids Based Ophthalmic Therapeutics. Recent Patents on Drug Delivery and Formulation. 2014; 8:206-223.
28. Kumbhoje SR, Tamboli ZH, D’Souza J. Synthesis and Characterization of Schiff bases of Chitosan for their Improved Mucoadhesion. Asian J. Research Chem. 2012; 5(9): 1099-1103.
29. Vinay C H, Goudanavar P, Acharya A, Ahmed MG, Kumar P. Development and Characterization of Orange Peel Extract Based Nanoparticles. Asian J. Pharm. Res. 2018; 8(2): 71-77
30. Wake PS, Kshirsagar MD. Design and Characterization of Solid Lipid Nanoparticle Based Transdermal Drug Delivery System. Asian J. Res. Pharm. Sci. 2017; 7(2): 87-91. DOI: 10.5958/2231-5659.2017.00013.3.
31. Wake PS, Kshirsagar MD. Compatibility study In-vitro drug release Study of Solid Lipid Nanoparticle Based Transdermal Drug Delivery System for Rasagiline Mesylate. Asian J. Res. Pharm. Sci. 2017; 7(2): 92-96. DOI: 10.5958/2231-5659.2017.00014.5.
32. Ghosh S, Bomma S, Prasanna VL, Srivani P, Bhanji D. New Analytical Methods in Nanotechnology-A Review. Asian J. Res. Pharm. Sci. 2013; Vol. 3: Issue 1, Pg 31-41.