Author(s):
Jyothi P, P. R Shahapur, Basavaraj C Metri
Email(s):
jyothi.p@bldedu.ac.in
DOI:
10.5958/0974-360X.2021.00182.7
Address:
Dr. Jyothi P1*, Dr. P. R Shahapur2, Dr. Basavaraj C Metri3
1Assistant Professor, Dept of Microbiology, Shri B M Patil Medical College Hospital and Research Centre, Vijayapur.586103
2Professor and Head, Dept of Microbiology, Shri B M Patil Medical College Hospital and Research Centre, Vijayapur.586103
3Associate Professor, Dept of Microbiology, Shri B M Patil Medical college hospital and Research Centre, Vijayapur.586103
*Corresponding Author
Published In:
Volume - 14,
Issue - 2,
Year - 2021
ABSTRACT:
Introduction: Pseudomonas aeruginosa is an opportunist pathogen, aerobic Gram negative bacilli belonging to family Pseudomonodaceae and genus Pseudomonas. Aim of the study is to compare of various phenotypic tests for detection of metallo-ß-lactamase (MBL) in Pseudomonas aeruginosa. Objectives of the study: 1. Isolation and identification of P.aeruginosa from various clinical samples. 2. To determine the prevalence of metallo-ß-lactamase in clinical isolates of Pseudomonas aeruginosa. 3. Comparison of different phenotypic tests for MBL detection. Materials and Methods: Pseudomonas aeruginosa isolates were isolated from various clinical samples for a period of one year from January 2016 to December 2016 at Shri B M Patil medical college hospital and research Centre. Samples which yielded P. aeruginosa were included in the study. Isolates resistant to imipenem were tested for MBL production using following three phenotypic tests 1. Double disk synergy test (DDST) (imipenem, EDTA 750µg/ml) 2. Combined disk test (CDT) (imipenem, imipenem + EDTA 750µg/ml) 3. MBL E test strip (Hi media) Results: A total of 92 P. aeruginosa were isolated. Of these, 22 were resistant to Imipenem and these were subjected to the phenotypic tests. MBL E test strip identified 13 (59%), CDT identified 10 (45.4%) and DDST identified 5 (22.7%) isolates as MBL producers. Majority of MBL producing isolates were isolated from pus sample. More isolates were obtained from in-patients compared to out-patients. Conclusion: Prevalence of MBL producing P. aeruginosa is 14%. MBL E test strip detected highest number of MBL producing isolates.
Cite this article:
Jyothi P, P. R Shahapur, Basavaraj C Metri. Comparison of various Phenotypic Tests for Detection of Metallo-beta-Lactamase in Pseudomonas aeruginosa isolates at a Tertiary Care Centre. Research J. Pharm. and Tech. 2021; 14(2):1022-1024. doi: 10.5958/0974-360X.2021.00182.7
Cite(Electronic):
Jyothi P, P. R Shahapur, Basavaraj C Metri. Comparison of various Phenotypic Tests for Detection of Metallo-beta-Lactamase in Pseudomonas aeruginosa isolates at a Tertiary Care Centre. Research J. Pharm. and Tech. 2021; 14(2):1022-1024. doi: 10.5958/0974-360X.2021.00182.7 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-2-78
REFERENCES:
1. Govan JRW. Pseudomonas, Stenotrophomonas, Burkholderia. In Mackie and McCartney. Practical medical microbiology, Edited by Collee JG, Fraser AG, Marmion BP, Simmons A. Churchill Livingstone, London. 1996; 14th ed: pp.413-24.
2. Bodey GP, Boliver R, Fainstein V, Jadeja L. Infections caused by Pseudomonas aeruginosa. Clin Infect Dis 1983:279-313.
3. Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn, Jr WC. The non fermentative Gram negative bacilli. In Color atlas and textbook of diagnostic microbiology. Lippincott Williams and Wilkins, Philadelphia.1997; 5th ed: pp.293-303.
4. Arunagiri K, Sekar B, Sangeetha G, John J. Detection and characterization of metallo-β-lactamases in Pseudomonas aeruginosa by phenotypic and molecular methods from clinical samples in a tertiary care hospital. West Indian Med J 2012; 61:778-82.
5. Yousefi S, Farajnia S, Nahaei MR. Detection of metallo-β-lactamase encoding genes among clinical isolates of Pseudomonas aeruginosa in northwest of Iran. Diagn Microbiol Infect Dis.2010; 68: 322-5.
6. Pitout JDD, Gregson DB, Poirel L McClure JA, Le P and Church DL. Detection of Pseudomonas aeruginosa producing metallo-- lactamases in a large centralized laboratory. J Clin Microbiol. 2005; 43:3129– 35
7. Pandya NP, Prajapati SB, Mehta SJ, Kikani KM, Joshi PJ. Evaluation of various methods for MBL detection in Gram negative bacilli. International J Biolog and Med Res 2011; 2:775-7
8. Chaudari MS, Javadekar TB, Ninama G, Pandya N, Damor J. A study of metallo-beta-lactamase producing Pseudomonas aeruginosa in clinical samples of SSG Hospital. National J Med Res 2011; 1:60-3.
9. Khosravi Y, Loke MF, Chua EG, Tay ST, Vadivelu J. Phenotypic Detection of Metallo-β-Lactamase in Imipenem-Resistant Pseudomonas aeruginosa.Scientific World J 2012:1-8.
10. Picão RC. Metallo--lactamase detection: comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM-, SPM-, or VIM-producing isolates. J Clin Microbiol.2008; 46:2028 – 37.
11. Khakhkhar DVM, Thangjam MRC, Bhuva DPJ, Ballal DM. Detection of Metallo-Beta-Lactamase Enzymes Producing Pseudomonas Aeruginosa Isolated from Various Clinical Samples.: Metallo-Beta-Lactamase Producing Pseudomonas Aeruginosa. Natl J Integr Res Med [Internet]. 2012Oct.31 [cited 2020Mar.17]; 3(4):4-
12. Umadevi S, Joseph NM, Kumari K, Easow J M, Kumar S, Stephen, S. Detection of extended spectrum beta lactamases, ampc beta-lactamases and metallobetalactamases in clinical isolates of ceftazidime resistant Pseudomonas aeruginosa. Braz J Microbiol. 2011; 42: 1284–88.
13. Sachdeva R, Sharma B, Sharma R. Evaluation of different phenotypic tests for detection of metallo-β-lactamases in imipenem-resistant Pseudomonas aeruginosa. J Lab Physicians. 2017; 9(4):249.
14. Ranjan S, Banashankari GS, Babu PR. Evaluation of phenotypic tests and screening markers for detection of metallo-beta lactamase in clinical isolates of Pseudomonas aeruginosa: A prospective study. Med J DY Patil Univ. 2015; 8:599–605.
15. Manoharan A, Chatterjee S, Mathai D. Detection and characterization of metallo beta lactamases producing Pseudomonas aeruginosa. Ind J Med Microbiol 2010; 28:241-4