Author(s):
Nilesh S. Kulkarni, Pallavi D. Gite, Manoj K. Munde, Shashikant N. Dhole, Rahul H. Khiste
Email(s):
nileshpcist@gmail.com
DOI:
10.5958/0974-360X.2021.00203.1
Address:
Nilesh S. Kulkarni1*, Pallavi D. Gite1, Manoj K. Munde1, Shashikant N. Dhole1, Rahul H. Khiste2
1Department of Pharmaceutics, PES Modern College of Pharmacy (For Ladies),
Moshi, Pune 412105, Maharashtra, India.
2Department of Pharmaceutical Chemistry, Marathwada Mitra Mandal’s, College of Pharmacy,
Thergaon, Pune 411033.
*Corresponding Author
Published In:
Volume - 14,
Issue - 2,
Year - 2021
ABSTRACT:
Solubility of a drug is the rate limiting step for the absorption of drug. The drugs which shows poor solubility in gastrointestinal tract fails to show therapeutic response and results in poor bioavailability. To improve solubility of a drug various carriers are available amongst them cyclodextrin is most popular choice of excipient. Cyclodextrins are a family of cyclic oligomers containing a-(1-4) linked D-glucopyranose units in the chair conformation. The cyclodextrin features a cavity which is hydrophobic and hydrophilic exterior. The most common cyclodextrins have six, seven, and eight glucopyranose units known as a, ß and ?- cyclodextrins respectively. The cavity is limited by hydroxyl groups of different chemical character. These dimensions allow the inclusion of several types of guest molecules/ drugs to form inclusion complexes. Because of host guest interaction, there is change in some properties of guest molecule. Various techniques are reported till today for the preparation of inclusion complex of cyclodextrins with drug to improve solubility as kneading, co-precipitation, solvent evaporation, spray drying, freeze drying and microwave irradiation. Microwave irradiation is an electromagnetic irradiation in frequency range of 0.3 to 300 GHz. Microwave irradiation chemistry is based on heating of materials by microwave dielectric heating effects. This phenomenon is material specific. The microwave irradiations have capacity to induce drying, polymeric crosslinkages/drug-polymer interaction and modify the crystal habit without the need for excessive heat, lengthy process and toxic reactants. Extensive literature survey revealed that Microwave irradiation technique has the capacity to improve the solubility of poorly water soluble drugs.
Cite this article:
Nilesh S. Kulkarni, Pallavi D. Gite, Manoj K. Munde, Shashikant N. Dhole, Rahul H. Khiste. A Comprehensive Review on Application of Microwave Irradiation for preparation of Inclusion Complexes with Cyclodextrins. Research J. Pharm. and Tech. 2021; 14(2):1131-1136. doi: 10.5958/0974-360X.2021.00203.1
Cite(Electronic):
Nilesh S. Kulkarni, Pallavi D. Gite, Manoj K. Munde, Shashikant N. Dhole, Rahul H. Khiste. A Comprehensive Review on Application of Microwave Irradiation for preparation of Inclusion Complexes with Cyclodextrins. Research J. Pharm. and Tech. 2021; 14(2):1131-1136. doi: 10.5958/0974-360X.2021.00203.1 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-2-99
REFERENCES:
1. Monika G, Neelima D. Microwave Chemistry: General Features and Applications. Ind J Pharm Edu Res. 2011; 45 (2): 175-183.
2. Jain K, Munde M, Khiste R, Kathiravan M. A Novel Microwave-assisted Green Synthesis of Condensed 2-substituted-pyrimidin-4(3H)-ones under Solvent-free Conditions. J. Heterocycl. Chem. 2009; 46 (2): 178-185.
3. Hayes BL. A text Book of Microwave Synthesis ‘Chemistry at the speed of light’. 1st ed. CEM Corporation Publishing; 2002.
4. Tatke P, Jaiswal Y. An Overview of Microwave Assisted Extraction and its Applications in Herbal Drug Research. Res J Med Plant. 2011; 5: 21-23.
5. Prajapati V, Jani G, Solanki H. Microwave Technology - A Potential Tool in Pharmaceutical Science. Int. J. Pharm. Tech. Res. 2010; 2 (3): 1754-1761.
6. Martin EM. Cyclodextrins and their uses: a review. Process Biochem. 2004; 39: 1033–1046.
7. Loftsson T, Magnusdottir A, Masson M. Self association and cyclodextrin solubilization of drugs. J. Pharm. Sci. 2002; 91: 2307-2316.
8. Siefert B, Pleyer U, Muller M, Hartmann C, Keipert S. Influence of cyclodextrins on the in vitro corneal permeability and in vivo ocular distribution of thalidomide. Pharmacol Ther. 1999; 15: 429– 431.
9. Vavia PR, Adhage NA. Inclusion complexation of nimesulide with β-cyclodextrins. Drug. Dev. Ind. Pharm. 1999; 25: 543–545.
10. Li J, Guo Y, Zografi G. The solid-state stability of amorphous quinapril in the presence of β-cyclodextrins. J Pharm. Sci. 2002; 91: 229–243.
11. Uekama K, Hrayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev. 1998; 98: 2045–2076.
12. Zhang Y, Jiang XG, Yao J. Nasal absorption enhancement of insulin by sodium deoxycholate in combination with cyclodextrins. Acta Pharmacol Sin. 2001; 22: 1051–1056.
13. Uekama K, Hrayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev. 1998; 98: 2045 –2076.
14. Al‐Marzouqi AH, Shehatta I, Jobe B, Dowaidar A, Phase solubility and inclusion complex of itraconazole with β‐cyclodextrin using supercritical carbon dioxide. J Pharma. sci. 2006; 95(2): 292-304.
15. Cunha-Filho MS, Dacunha-Marinho B, Torres-Labandeira JJ, Martínez-Pacheco R, Landin M, Characterization of β-lapachone and methylated β-cyclodextrin solid-state systems. Aaps Pharm Sci Tech.2007; 8(3): E68-77.
16. Moyano JR, Arias-Blanco MJ, Gines JM, and Giordano F, Solid-state characterization and dissolution characteristics of gliclazide-β-cyclodextrin inclusion complexes. Int. J. Pharm. 1997; 148(2): 211-17.
17. Nie, S, Fan X, Peng Y, Yang X, Wang C, Pan W. In vitro and in vivo studies on the complexes of vinpocetine with hydroxypropyl-b-cyclodextrin. Arch. Pharm. Res. 2007; 30: 991–1001
18. Doijad R, Kanakal M, Manvi FV. Effect of processing variables on dissolution and solubility of piroxicam: Hydroxypropyl-cyclodextrin inclusion complexes. Indian J. Pharm. Sci., 2007; 69 (2): 323-326.
19. Friedrich H, Nada A, Bodmeier R, Solid state and dissolution rate characterization of co-ground mixtures of nifedipine and hydrophilic carriers. Drug Dev. Ind. Pharm. 2005; 31(8): 719-28.
20. Broadhead J, Rouan SE, Rhodes CT. Dry-powder inhalers. Evaluation of testing methodology and effect of inhaler design. Pharm. Acta. Helv. 1995; 70 (2): 125-131.
21. Cao F, Guo J, Ping Q. The physicochemical characteristics of freeze-dried scutellarin-cyclodextrin tetracomponent complexes. Drug. Dev. Ind. pharm. 2005; 31(8): 747-756.
22. Singh R, Ain S. Characterization and intrinsic dissolution rate study of microwave assisted cyclodextrin inclusion complexes of gemfibrozil. Int J. Pharm. Sci. 2016; 8 (10) : 160-163.
23. Vij M, Garse H, Dand N, Kadam V, Hirlekar R. Effect of preparation method on complexation of Cefdinir with β-cyclodextrin. J Incl Phenom Macrocycl Chem .2010; 67: 39–47.
24. Mariarosa M, Barbara B, Pietro B, Francesco P. Microwave generated solid dispersions containing Ibuprofen. Int J Pharm. 2008; 361: 125–130.
25. Nacsaa A, Ambrusa R, Berkesi O, Szabó-Révésza P, Aignera Z. Water-soluble loratadine inclusion complex: Analytical control of the preparation by microwave irradiation. J Pharm. Biomed Anal. 2008; 48: 1020–1023.
26. Xianhong W, Fei T, Zhijun J, Ziuyang L. Preparation and study the 1:2 inclusion complex of carvedilol with β-cyclodextrin. J Pharm. Biomed Anal. 2004; 34: 517–523.
27. Yadav N, Chhabra G, Pathak K. Enhancement of solubility and dissolution rate of a poorly water soluble drug using single and double hydrophilization approach. Int J Pharm Pharm Sci. 2012; 4(1): 395-405.
28. Ying L, Sheng H, Long M, Xue-Y. Study on structure and characterization of inclusion complex of gossypol/β cyclodextrin. Spectrochim Acta A Mol Biomol Spectrosc. 2005; 61: 1025–1028.
29. Vieira C, Armenio C, Rui A. Microwave synthesis and in vitro stability of diclofenac-β-cyclodextrin conjugate for colon delivery. Carbohydr. Res. 2013; 93: 512– 517.
30. Mogal P, Derle D. Soluplus as a Potential Enhancer of Cefixime Biopharmaceutical Properties through Solid Dispersion Prepared by Different Pharmaceutical Interventions. Integr J Glob Health. 2017, 1:2.
31. Zawar L, Bari S. Microwave Induced Solid Dispersion as a Novel Technique for Enhancing Dissolution Rate of Repaglinide. Advances in Pharmacology and Pharmacy. 2013; 1 (2): 95-101.
32. Ranpise N, Kulkarni N, Mair P, Ranade A. Improvement of water solubility and in vitro dissolution rate of aceclofenac by complexation with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. Pharm. Dev. Technol. 2010; 15(1): 64–70.
33. Kulkarni N, Ranpise N, Dhole S, Mohan G. Physico Chemical Evaluation and In-vitro Release Studies of Irbesartan: β-Cyclodextrin: Soluplus Ternary Inclusion Complex. Research J. Pharm. and Tech. 2014; 7(9): 987-994.
34. Arali B, Kumar AY and Setty MC. Physicochemical characterisation and dissolution properties of Efavirenz- β cyclodextrin solid binary systems. Int J Pharm Sci & Res 2018; 9(12): 5350-5356.
35. Badr-Eldin SM, Ahmed TA, Ismail HR. Aripiprazole-Cyclodextrin Binary Systems for Dissolution Enhancement: Effect of Preparation Technique, Cyclodextrin Type and Molar Ratio. Iran J Basic Med Sci; 2013; 16:1223-1231.
36. Bhopate S, Dhole S. Preparation and Characterisation of β-Cyclodextrin Nebivolol Inclusion Complex. Int J Pharm Sci Res 2015; 6(5): 2205-13.
37. Kumari K, Sharma K, Philip B, Pathak K. Preparation and evaluation of binary and ternary inclusion complex of Itraconazole. Der Pharmacia Lettre, 2010, 2(4): 144-155
38. Mogal P, Derle D. Use of Solid Dispersions and Inclusion Complexation for Enhancing Oral Bioavailability of Ziprasidone in Treating Schizophrenia. J Med Chem Drug Des. 2017; 3 (3): 37-48.