Author(s): Alexander P. Nugraha, Igo S. Ihsan, Aristika Dinaryanti, Eryk Hendrianto, Helen Susilowati, Eric P. Prasetyo, Ida B. Narmada, Diah S. Ernawati, Andreas P. Nugraha, Viol Dhea Kharisma, Wibi Riawan, Fedik A. Rantam

Email(s): diah-s-e@fkg.unair.ac.id

DOI: 10.52711/0974-360X.2021.00465   

Address: Alexander P. Nugraha1, Igo S. Ihsan2, Aristika Dinaryanti2, Eryk Hendrianto2, Helen Susilowati3, Eric P. Prasetyo4, Ida B. Narmada1, Diah S. Ernawati5*, Andreas P. Nugraha6, Viol Dhea Kharisma7, Wibi Riawan8, Fedik A. Rantam3,9
1Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia.
3Research Center of Vaccine Technology and Development, Universitas Airlangga, Surabaya, Indonesia.
4Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
5Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
6Oral and Maxillofacial Surgery Resident, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
7Department of Biology, Faculty of Mathematics and Natural Science, Brawijaya University, Malang, Indonesia.
8Department of Biomolecular

Published In:   Volume - 14,      Issue - 5,     Year - 2021


ABSTRACT:
Despite gingival derived mesenchymal stem cells (GDMSCs) are unique and have numerous advantages for regenerative dentistry, the hypoxia preconditioning of GDMSCs may be essential prior to the transplantation. The aim of this study is to examine whether CoCl2 can enhance HIF-1a in GDMSCs in vitro. GDMSCs of Rabbit (Oryctolagus cuniculus) were obtained from laboratory stock. The sample for this study was randomly selected and divided into 4 groups; GDMSC normoxia (24 hours and 48 hours) groups and GDMSC hypoxia (24 hours and 48 hours) groups respectively (N=20/n=5). To stimulate the hypoxia condition, the final concentration of 100µM Cobalt (II) Chloride (CoCl2) was used in this study. The examination of Hypoxia Inducible Factor-1a (HIF-1a) stimulated with CoCl2 in the GDMSCs utilized immunocytochemistry methods with Fluorescein isothiocyanate antibody labelling. The Tukey Honest Significant Different (HSD) test was conducted to compare the significant difference in HIF-1a expression between groups (p<0.01). The greatest expression of HIF-1a is found in GDMSCs treated with CoCl2 for 24 hours. There was significant difference in HIF-1a expression between GMSCs normoxia (24 hours and 48 hours) and GMSCs hypoxia of 24 hours groups but not 48 hours group (p<0.01). CoCl2 can enhance significantly HIF-1a expression of GDMSCs for 24 hours in vitro.


Cite this article:
Alexander P. Nugraha, Igo S. Ihsan, Aristika Dinaryanti, Eryk Hendrianto, Helen Susilowati, Eric P. Prasetyo, Ida B. Narmada, Diah S. Ernawati, Andreas P. Nugraha, Viol Dhea Kharisma, Wibi Riawan, Fedik A. Rantam. Cobalt (II) Chloride in Enhancing Hypoxia Inducible Factor-1α Expression of Gingival Derived Mesenchymal Stem Cells in Vitro. Research Journal of Pharmacy and Technology. 2021; 14(5):2639-2. doi: 10.52711/0974-360X.2021.00465

Cite(Electronic):
Alexander P. Nugraha, Igo S. Ihsan, Aristika Dinaryanti, Eryk Hendrianto, Helen Susilowati, Eric P. Prasetyo, Ida B. Narmada, Diah S. Ernawati, Andreas P. Nugraha, Viol Dhea Kharisma, Wibi Riawan, Fedik A. Rantam. Cobalt (II) Chloride in Enhancing Hypoxia Inducible Factor-1α Expression of Gingival Derived Mesenchymal Stem Cells in Vitro. Research Journal of Pharmacy and Technology. 2021; 14(5):2639-2. doi: 10.52711/0974-360X.2021.00465   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-5-49


REFERENCES:
1.    Tiwari RK, Sharma V, Pandey R, Shukla RS. Stem Cells: Basics and its Prospective uses in Medical field. Research J. Pharm. and Tech 2018; 11(4): 1530-1534.
2.    Nugraha AP, Rezkita F, Puspitaningrum MS, Luthfimaidah MS, Narmada IB, Prahasanti C, Ernawati DS, Rantam FA. Gingival Mesenchymal Stem Cells and Chitosan Scaffold to Accelerate Alveolar Bone Remodelling in Periodontitis: A Narrative Review. Research J. Pharm. and Tech 2020; 13(5): 2502-2506.
3.    Azeem S, Raj S, Kajal K, Thiagarajan P. Umbilical Cord Stem Cells: A Review. Research J. Pharm. and Tech 2018; 11(6): 2709-2714.
4.    Narmada IB, Laksono V, Nugraha AP, Ernawati DS, Winias S, Prahasanti C, Dinaryanti A, Susilowati H, Hendrianto E, Ihsan IS, Rantam FA. Regeneration of Salivary Gland Defects of Diabetic Wistar Rats Post Human Dental Pulp Stem Cells Intraglandular Transplantation on Acinar Cell Vacuolization and Interleukin-10 Serum Level. Pesquisa Brasileira em Odontopediatria e Clínica Integrada 2019; 19(e5002): 1-10.
5.    Rezkita F, Wibawa KGP, Nugraha AP. Curcumin loaded Chitosan Nanoparticle for Accelerating the Post Extraction Wound Healing in Diabetes Mellitus Patient: A Review. Research J. Pharm. and Tech. 13(2): February 2020.1039
6.    Nugraha AP, Rezkita F, Putra KG, Narmada IB, Ernawati DS, Rantam FA. Triad Tissue Engineering: Gingival Mesenchymal Stem Cells, Platelet Rich Fibrin and Hydroxyapatite Scaffold to ameliorate Relapse Post Orthodontic Treatment. Biochem. Cell. Arch. 2019; 19(2): 3689-3693.
7.    Prasetyo EP, Widjiastuti I, Cahyani F, Kuntjoro M, Hendrijantini N, Hariyani N, et al. Cytotoxicity of calcium hydroxide on human umbilical cord mesenchymal stem cells. Pesqui Bras Odontopediatria Clín Integr. 2020; 20:e0044.
8.    Sari DS, Maduratna E, Ferdiansyah, Latief FDE; Satuman, Nugraha AP, Sudiana K, Rantam FA. Osteogenic Differentiation and Biocompatibility of Bovine Teeth Scaffold with Rat Adipose-derived Mesenchymal Stem Cells. Eur J Dent. 2019; 13(2): 206-212.
9.    Rantam FA, Nugraha AP, Ferdiansyah F, Purwati P, Bumi C, Susilowati H, Hendrianto E, Utomo DN, Suroto H, Sumartono C, Setiawati R, Prakoeswa CR, Indramaya DM. A Potential Differentiation of Adipose and Hair Follicle-derived Mesenchymal Stem Cells to Generate Neurons Induced with EGF, FGF, PDGF and Forskolin. Research J. Pharm. and Tech. 2020; 13(1): 275-281.
10.    Nugraha AP, Narmada IB, Ernawati DS, Widodo DWW, Lestari P, Dinaryanti A, Hendrianto E, Ihsan IS, Susilowati H. Gingival Mesenchymal Stem Cells from Wistar Rat’s Gingiva (Rattus Novergicus) – Isolation and Characterization (In Vitro Study). J Int Dent Med Res 2018; 11(2): 694-699
11.    Suciadi SP, Nugraha AP, Ernawati DS, Ayuningtyas NF, Narmada IB, Prahasanti C, Dinaryanti A, Ihsan IS, Hendrianto E, Susilowati H, Rantam FA. The Efficacy of Human Dental Pulp Stem Cells in regenerating Submandibular Gland Defects in Diabetic Wistar Rats (Rattus novergicus). Research J. Pharm. and Tech. 2019; 12(4): 1573-1579.
12.    Prahasanti C, Nugraha Ap, Saskianti T, Suardita K, Riawan W, Ernawati DS. Exfoliated Human Deciduous Tooth Stem Cells Incorporating Carbonate Apatite Scaffold Enhance BMP-2, BMP-7 and Attenuate MMP-8 Expression During Initial Alveolar Bone Remodeling in Wistar Rats (Rattus norvegicus). Clinical, Cosmetic and Investigational Dentistry 2020: 12 79–85
13.    Timothy CN, Samyuktha PS, Brundha MP. Dental pulp Stem Cells in Regenerative Medicine – A Literature Review. Research J. Pharm. and Tech 2019; 12(8): 4052-4056.
14.    Nugraha AP, Purwati, Susilowati H, Hendrianto E, Karsari D, Ertanti N, Dinaryanti A, Ihsan IS, Narmada IB, Ernawati DS, Rantam FA. Medicinal Signaling Cells Metabolite Oral Based as a Potential Biocompatible Biomaterial Accelerating Oral Ulcer Healing (In Vitro Study). Eur Dent J 2019; 13(3): 432–436.
15.    El-Sayed KMF, Dörfer CE. Gingival Mesenchymal Stem/Progenitor Cells: A Unique Tissue Engineering Gem. Stem Cells International. 2016; 7154327: 1-16.
16.    Nugraha AP, Narmada IB, Ernawati DS, Dinaryanti A, Hendrianto E, Ihsan IS, Riawan W, Rantam FA. Osteogenic potential of gingival stromal progenitor cells cultured in platelet rich fibrin is predicted by core-binding factor subunit-α1/Sox9 expression ratio (in vitro). F1000Research 2018, 7:1134.
17.    Nugraha AP, Narmada IB, Ernawati DS, Dinaryanti A, Hendrianto E, Ihsan IS, Riawan W, Rantam FA. In vitro bone sialoprotein-I expression in combined gingival stromal progenitor cells and platelet rich fibrin during osteogenic differentiation. Tropical Journal of Pharmaceutical Research December 2018;17(12): 2341-2345.
18.    Nugraha AP, Narmada IB, Ernawati DS, Dinaryanti A, Hendrianto E, Riawan W, Rantam FA. Bone alkaline phosphatase and osteocalcin expression of rat’s Gingival mesenchymal stem cells cultured in platelet-rich fibrin for bone remodeling (in vitro study). Eur J Dent 2018; 12: 566-7
19.    Nugraha AP, Narmada IB, Ernawatı DS, Dınaryantı A, Hendrıanto E, Ihsan IS, Riawan W, Rantam FA. The aggrecan expression post platelet rich fibrin administration in gingival medicinal signaling cells in Wistar rats (Rattus novergicus) during the early osteogenic differentiation (in vitro). Kafkas Univ Vet Fak Derg, 25 (3): 421-425, 2019.
20.    Nugraha AP, Narmada IB, Ernawati DS, Dinaryanti A, Susilowati H, Hendrianto E, Ihsan IS, Riawan W, Rantam FA. Somatic Cells Acceleration by Platelet Rich Fibrin. Indian Vet J 2019; 96(04): 30-34.
21.    Kwon SY, Chun SY, Ha YS, et al. Hypoxia Enhances Cell Properties of Human Mesenchymal Stem Cells. Tissue Eng Regen Med. 2017; 14(5): 595‐604.
22.    Fotia C, Massa A, Boriani F, Baldini N, Granchi D. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cytotechnology. 2015; 67: 1073-1084.
23.    D’Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC. Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone. 2006; 39: 513–522.
24.    Wu D, Yotnda P. Induction and testing of hypoxia in cell culture. J Vis Exp. 2011; 54:2899.
25.    Lambertini E, Penolazzi L, Angelozzi M, et al. Hypoxia Preconditioning of Human MSCs: a Direct Evidence of HIF-1α and Collagen Type XV Correlation. Cell Physiol Biochem. 2018; 51(5): 2237‐2249.
26.    Teti G, Focaroli S, Salvatore V, Mazzotti E, Ingra L, Mazzotti A, Falconi M. The Hypoxia-Mimetic Agent Cobalt Chloride Differently Affects Human Mesenchymal Stem Cells in Their Chondrogenic Potential. Stem Cells in Cartilage Diseases and Repair. 2018; 3237253: 1-9.
27.    Nugraha AP, Prasetyo EP, Kuntjoro M, Ihsan IS, Dinaryanti A, Susilowati H, Hendrianto E, Narmada IB, Ernawati DS, Nugraha AP, Rantam FA. The Effect of Cobalt (II) Chloride in the Viability Percentage and the Induced Hypoxia Inducible Factor -1α of Human Adipose Mesenchymal Stem Cells (HAMSCs): An In Vitro Study. Sys Rev Pharm 2020; 11(6): 308-314.
28.    Hu X, Wu R, Shehadeh LA, Zhou Q, Jiang C, et al. Severe hypoxia exerts parallel and cell-specific regulation of gene expression and alternative splicing in human mesenchymal stem cells. BMC Genomics. 2014; 15: 303.
29.    Drela K, Sarnowska A, Siedlecka P, Szablowska-Gadomska I, Wielgos M, et al. Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner. Cytotherapy. 2014; 16: 881-892.
30.    Leroux L, Descamps B, Tojais NF et al. Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a wnt4-dependent pathway. Molecular Therapy; 2010; 18(8): 1545–1552.
31.    Saller MM, Prall WC, Docheva D et al. Increased stemness and migration of human mesenchymal stem cells in hypoxia is associated with altered integrin expression. Biochemical and Biophysical Research Communications. 2012; 423(2): 379–385.
32.    Pei M. Environmental preconditioning rejuvenates adult stem cells’ proliferation and chondrogenic potential. Biomaterials 2017; 117: 10–23.
33.    Hirsilä M, Koivunen P, Xu L, Seeley T, Kivirikko KI, Myllyharju J. Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. The FASEB 2005; 19(10): 1308–1310.
34.    Haque N, Rahman MT, Kasim NHA Alabsi AM. Hypoxic Culture Conditions as a Solution for Mesenchymal Stem Cell Based Regenerative Therapy. 2013; 632972: 1-12.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available