Author(s): Perumal Andal, S. Tamijselvi, S. Pradeep, K.Gayathri

Email(s): andalprithu.sbs@velsuniv.ac.in

DOI: 10.52711/0974-360X.2021.00470   

Address: Perumal Andal, S. Tamijselvi, S. Pradeep, K.Gayathri
Vels Institute of Science Technology and Advanced Studies, Department of Chemistry, School of Basic Sciences, Pallavarm, Kancheepuram, District Chennai - 600117, Tamil Nadu, India. *Corresponding Author

Published In:   Volume - 14,      Issue - 5,     Year - 2021


ABSTRACT:
In this study, a very simple and highly effective mechanochemical preparation method was developed for the preparation of Ni nanoparticles supported graphene oxide (GO). The developed method is not only very simple and efficient, but also, the morphology of Ni/GO nanocomposites can be tuned by simply varying the metal loading. The nanoparticle has an immense assortment of prospective applications in biomedical, optical, and electronic fields. Nanoparticles are of great technological fascination as they are effectively an aqueduct between bulk substances and atomic or molecular structures. The properties of matter change as their size approaches to nanoscale and as the atomic percentage at the material surface becomes significant. For bulk materials larger than one micrometre in size, the rate of particles at the surface is minute relative to the total number of particles of the material. The absorbing and occasionally unpredicted properties of nanoparticles are not partly due to the characteristic of the material surface dominating the properties instead of the bulk properties. In this study, two different graphene oxide supported by two mono Ni Mn and bimetallic Ni\Mn nanoparticles catalyst synthesized. The size and shape of the products were characterised by scanning electron microscopy (SEM) andX-ray diffraction spectroscopy (XRD). Results proved that the newly developed graphene oxide carried nickel-manganese nanoparticles catalysts can be more efficient to reductive, oxidative and environmentally important organic pollutants.


Cite this article:
Perumal Andal, S. Tamijselvi, S. Pradeep, K.Gayathri. Synthesis of Graphene oxide supported with Bimetallic nanoparticles and its Application. Research Journal of Pharmacy and Technology. 2021; 14(5):2665-0. doi: 10.52711/0974-360X.2021.00470

Cite(Electronic):
Perumal Andal, S. Tamijselvi, S. Pradeep, K.Gayathri. Synthesis of Graphene oxide supported with Bimetallic nanoparticles and its Application. Research Journal of Pharmacy and Technology. 2021; 14(5):2665-0. doi: 10.52711/0974-360X.2021.00470   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-5-54


REFERENCES:
1.    Robert, T.; Sylvain, C.; Todd, O.; Patrick, P.; Gunawan, A.; Lv, W.; Rosengarten, G.; Prasher, R.; Tyagi, H.; Small particles, big impacts, A review of the diverse applications of nanofluids. J Appl Phy.2013; 113, 011301-11319.
2.    Taylor, R.A.; Otanicar, T.; Rosengarten, G.; Nanofluid-based optical filter optimization for PV/T systems. Light Sci and Appl, 2012; 10: 1-7.
3.    Hewakuruppu, Y.L.; Dombrovsky, L.A.; Chen, C.; Timchenko. V.; Jiang, X.; Baek, S.; Taylor, R.A.; Plasmonic. pump–probe. method to study semi- transparent nanofluids. Appl. Optics, 2013; 52, 6041-6050
4.    Zhong, L.; Lisa A. F.; Pratyush T.; Sara, A. D.; Michael, T. L.; Mark, A. R.; Tobin J. M.; In Situ Catalytic Encapsulation of Core-Shell Nanoparticles Having Variable Shell Thickness, Dielectric and Energy Storage Properties of High-Permittivity Metal Oxide Nanocomposites. Chem. Mate.2010; 22: 5154-5164
5.    Benjamin. W.; Yugang, S.; Brian, M.; and Younan, X;. Shape-Controlled Synthesis of Metal Nanostructures, The Case of Silver. Chem. Eur. J.2005 11, 454 – 463.
6.    Evanoff G.; Chumanov.; Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections. ‘J. Phys. Chem. B .2004,108, 13957- 13962
7.    Getahun, M.; Robert, W.; Geoffrey, L.; Bratoljub, H. M.; Dan Meisel.; Redox Catalysis on. Naked. Silver Nanoparticles. J. Phy. Chem. C.2007, 111, 12220-12226.
8.    Oliveira, M.; Ugarte, D.; Zanchet, D.; Zarbin, A.; Influence of synthetic parameters on the size, structure and stability of dodecaethiol-stabilized silver Nanoparticles. J. Col. Inter. Sci.2005; 292,429-435
9.    Afghan, S.; Raza, G. and Lashari.; Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram- negative bacteria. African J. Micro. Res.2011, 5,1368-1373
10.    Johnson, K. E.; Xiao, L.; and Driver, G.; Ionic Liquids. in ACS Symposium 818, 2012,
11.    Rogers R. D.; and Seddon, K. R. Editors, Washington D.C.; Ionic Liquids. in ACS Symposium 230,2002.
12.    Xiao, L.; and Johnson, K. E.; Electrochemistry of 1-Butyl-3-methyl-1H-imidazolium Tetrafluoroborate Ionic Liquid. J. Electrochem. Soc.2003,150, 307-312,
13.    Wilkes, J.S.; Zaworotko, M. J.; Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem Soc. Chem. Commun.1992, 13, 965-967
14.    Gupta, V.K.; Yola, M.L.; Eren, T.; Kartal, F.; Caglayan, M.O.; Atar, N.; Catalytic activity of Fe @ Ag nanoparticles involved calcium alginate beads for the reduction of nitrophenols. J. mol. Liquids.2014, 190,133-138
15.    Sun, X.; Dong, S.; and Wang, E.; One step synthesis and size control of dendrimer protected gold nanoparticles a heat treatment – based strategy. Nature 2004,45,2181-2184
16.    Tamayo, L.A.; Zapata, P.A.; Vejar, N.D.; Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogens, Mater. Sci. Eng.2014, 40, 24-31.
17.    Taner, M.; Sayar, N.; Yulug, I.G.; and Suzer, S.; Synthesis, characterization and antibacterial investigation of silver–copper nanoalloys. J .Mater. Chem.2011, 21, 13150- 13154
18.    Liu, W.J.; Qian, T. T.; and Jiang, H.; Bimetallic Fe nanoparticles, Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chemical. Eng .2014,236, 448-463
19.    Stankovich, S.; Dikin, D. A.; Dommett, G.H.B.; Kohlhaas, K.M.; Graphene-based composite Materials. Nature 2006,422, 282-286.
20.    Murali, S.; Cai, W.; Li, X.; Suk J. W.; Potts, J. R.; Ruoff, R. S.; Graphene and Graphene Oxide, Synthesis, Properties, and Applications. Adv. mater.2010, 20,1-19.
21.    Liu, W.J.; Qian, T.T.; and Jiang, H.;. Bimetallic Fenanoparticles, Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chem. Eng. J.2014, 236, 448-463.
22.    Wu, S.H.; and Chen, D. H.; Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol.; J. Coll. Inter. Sci.2003,259,282-286.
23.    Wang, W.; Itoh.; Y.; Lenggoro,I.; and Okuyama, K.; Nickel and Nickel Oxide Nanoparticles Prepared from Nickel Nitrate Hexahydrate by a Low Pressure Spray Pyrolysis, Mate. Sci. Eng. B.2004, 111, 69–76.
24.    Eluri, R.; and Paul, B.; Microwave assisted greener synthesis of nickel nanoparticles using sodium hypophosphite.; Mater Letters 2012,76,36–39.
25.    Tseng, W.; and Chen, C.; Dispersion and rheology of nickel nanoparticle inks. J. Mater. Sci. 2006; 41: 1213–1219.
26.    Perumal Andal.; and Roopakala.; Graphene Oxide Supported Ruthenium and Ruthenium-Silver Nanoparticles as Catalyst with Antibacterial Activity. Asian. J. Chem, 2017;29, 1-8.
27.    Perumal Andal.; Chandran Loganayagi.; Roopakala.; Synthesis and characterisation of graphene oxide supported mono and bimetallic nano particles as catalyst with antibacterial activity. Research. J. Pharm. and Tech 2017:10:3610-3620.
28.    Perumal Andal.; Tamilselvi. S.; and Indra Priyatharesini. P.; Green synthesis of silver nanoparticles from carrot; Research J Pharm and Tech.2018, 11,2757-2760.
29.    Perumal Andal, S. Tamilselvi and P. Indra priyatharesini. Kinetic Study for Reduction of Organic Dye Using Graphene Oxide Supported Ru-Ag Nanoparticles Catalyst. Asian. J. Chem. 2018,30, 2175-2179.
30.    Mayakrishnan G.; Somasundaram S.; Dian D.; Facile Mechanochemical Synthesis of Nickel/Graphene Oxide Nanocomposites with Unique and Tunable Morphology: Applications in Heterogeneous Catalysis and Supercapacitors, Catalysts 2019, 9, 486-505.
31.    Joo S.H.; Park J.Y.; Renzas J.R.; Butche, D.R.; Huang W.; Somorjai G.A. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation. Nano Lett. 2010, 10, 2709–2713.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available