Author(s):
Nozim N. Khoshimov, Guli M. Raimova, Kabul E. Nasirov, Zulayho A. Mamatova, Nodira I. Mamadaliyeva, Abbaskhan S. Тuraev
Email(s):
khoshimovn@inbox.ru
DOI:
10.52711/0974-360X.2021.00571
Address:
Nozim N. Khoshimov1*, Guli M. Raimova1, Kabul E. Nasirov1, Zulayho A. Mamatova2, Nodira I. Mamadaliyeva3, Abbaskhan S. Тuraev4
1Institute of Biophysics and Biochemistry at the National University of Uzbekistan. 100174, Tashkent City, Almazar District, Students Town, University St., 174.
2National University of Uzbekistan. Tashkent, Uzbekistan. 100174, Tashkent City, Almazar District, Students Town, University St., 174.
3Tashkent State Pedagogical University Named After Nizami. 100070, Tashkent City, Chilanzor District, Bunyodkor Ave., 27.
4The Institute of Bioorganic Chemistry Named After A.S. Sadikov. 100125, Tashkent City, Mirzo Ulugbek District, Mirzo Ulugbek Avenue, 83
*Corresponding Author
Published In:
Volume - 14,
Issue - 6,
Year - 2021
ABSTRACT:
Experimental studies and analyses of new compounds with different mechanisms of action on systemic haemostasis are relevant for the identification and development of potential pharmacological preparations. The modified sulphated polysaccharides with anticoagulant and antithrombin activity were studied for haemostasis. Platelet-rich plasma was obtained by centrifugation at 200g for 10 minutes. The remaining citrate blood was further centrifuged at 1500g for 10 min to obtain platelet-poor plasma. The antithrombin activity of the compounds was evaluated In vitro by their effect on the recalcification time, thrombin and prothrombin time of rabbit and human blood plasma stabilized with a 3.8% sodium citrate solution in the ratio 9:1. The results showed that the anticoagulant activity of the studied sulphates increased with an increasing degree of sulphation. Sulphated polysaccharides showed strong anticoagulant activity In vitro. The experimental results showed a significant increase in the coagulation time of blood plasma in tests for prothrombin and thrombin time. These properties of these components are of particular interest, and further detailed studies of the physicochemical characteristics and mechanisms of action of these molecules should be performed, which will eventually allow them to be used as heparin-like drugs.
Cite this article:
Nozim N. Khoshimov, Guli M. Raimova, Kabul E. Nasirov, Zulayho A. Mamatova, Nodira I. Mamadaliyeva, Abbaskhan S. Тuraev. The effect of Sulphated cellulose on System of Haemostasis. Research Journal of Pharmacy and Technology. 2021; 14(6):3283-9. doi: 10.52711/0974-360X.2021.00571
Cite(Electronic):
Nozim N. Khoshimov, Guli M. Raimova, Kabul E. Nasirov, Zulayho A. Mamatova, Nodira I. Mamadaliyeva, Abbaskhan S. Тuraev. The effect of Sulphated cellulose on System of Haemostasis. Research Journal of Pharmacy and Technology. 2021; 14(6):3283-9. doi: 10.52711/0974-360X.2021.00571 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-6-61
REFERENCES:
1. Alekseenko T.V., Zhanaeva S. Ya., Venediktova A.A. Аnti-tumor and anti-metastatic activity of sulfate-derived polysaccharide fucoidan, isolated from brown seaweed of the coastal Sea Fucusevanescens. Byul. experiment in biology and medicine. 2007; T.143, No. 6. 675-677.
2. Chen J.H., Lim J.D., Sohn E.H., Choi Y.S. and Han E.T. Growth-inhibitory effect of a fucoidan from brown seaweed Undariapinnatifida on Plasmodium parasites. Parasitol. Res. 2009; 1042: 245–250. DOI: 10.1007/s00436-008-1182-2.
3. Hayashi K., Nakano T., Hasimoto M. Defensive effect of a fucoidan from brown alga Undariapinnatifida against herpes simplex virus infection. Int. Immunopharmacol. 2008. Vol. 8, N 1. 109-116. DOI: 10.1016/j.intimp.2007.10.017.
4. Athukorala Y. Jung WK, Park PJ, Lee YJ, Kim SK, Vasanthan T. Evaluation of biomolecular interactions of sulfated polysaccharide isolated from Grateloupiafilicina on blood coagulation factors. J. Microbiol Biotechnol. 2008; Mar; 183. 503-11.
5. Wang Z. Li L, Chrn L, Li B, Guo S. Relationship between site of sulfate groups in cellulose sulfate and their anticoagulation activity. Huagong Xuebao. Journal of Chemical Industry and Engineering China. 2005; V.569: 1738-1742.
6. Fan L. Gong Y., Cao M., Gao S. Synthesis, characterization, and anticoagulant activity of carboxymethyl starch sulfates. Journal of Applied Polymer Science V 127, Issue 6, 2013. 4865-4872. doi.org/10.1002/app.38088.
7. Geerts W.H., Bergqvist D, Pineo G.F., Heit J.A., Samama C.M., Lassen M.R., Colwell C.W. Prevention of venous thromboembolism: American College of Chest Physicians evidence-based clinical practice guidelines 8th Edition. Chest. 2008; 133(6): 381S-453S. doi: 10.1378/chest.08-0656.
8. Ageno W, Riva N, Schulman S, et al; IRSVT Study Group. Antithrombotic treatment of splanchnic vein thrombosis: results of an international registry. Semin Thromb Hemost. 401: 2014. 99-105. doi: 10.1055/s-0033-1363473.
9. Molteni M. Cimminiello C. Warfarin and atrial fibrillation: from ideal to real the warfarin affaire. Thromb J. - 121). 2014. 5. doi: 10.1186/1477-9560-12-5.
10. Vo T., Vazquez S., Rondina M.T. Current state of anticoagulants to treat deep venous thrombosis. Curr Cardiol Rep. -163. 2014. 463.
11. Levi M., Eerenberg, Lowenberg E. Bleeding in patients using new anticoagulants or antiplatelet agents: risk factors and management. Neth J Med. -682. 2010. 68-76.
12. Tosetto A, Castaman G, Rodeghiero F. Bleeders. Bleeding rates, and bleeding score. J Thromb Haemost. 11 Suppl. 1: 2013. 142–50. doi: 10.1111/jth.12248.
13. Liotta E. Prabhakaran S. Warfarin-associated intracerebral hemorrhage is increasing in prevalence in the United Statesm. E. Liotta, J Stroke Cerebrovasc Dis. -227. -2013. 1151-1155. doi: 10.1016/j.jstrokecerebrovasdis.2012.11.015.
14. Ganetsky V. Hadley D., Thomas T. Role of Novel and Emerging Oral Anticoagulants for Secondary Prevention of Acute Coronary Syndromes. Pharmacotherapy. 346. 2014. 590-604. DOI: 10.1002/ phar.1375.
15. Limdi M.A., Crowley M.R., Beasley T.M., Limdi N.A., Allon M. Influence of kidney function on risk of hemorrhage among patients taking warfarin: a cohort study. Am J Kidney Dis. 61(2): 2013. 354–357. doi: 10.1053/j.ajkd.2012.09.012.
16. Roskell N. Samuel M., Noack H., Monz B. Major bleeding in patients with atrial fibrillation receiving vitamin K antagonists: a systematic review of randomized and observational studies. Europace. -156. 2013. .787-797. doi: 10.1093/europace/eut001.
17. Scaglione F. New oral anticoagulants: comparative pharmacology with vitamin K antagonists. Clin Pharmacokinet. - 522). 2013. 69-82. doi: 10.1007/s40262-012-0030-9.
18. Laboratory research methods in the clinic // Reference. Ed. V.V. Menshikov. M.: Medicine, 1987. –172 p.
19. Rosenberg, R.D. Biological actions of heparin. Siminars in Hematology. -V.14, N4. 1977. рр.427 - 440.
20. Teien, A.N., Lie M. Heparin assay in plasma a comparison of five clotting methods. Thromb Res.-V.7. -N5. 1975. 777 - 788. doi.org/ 10.1016/0049-3848(75)90202-9.
21. Yin E.T. Wessler S., J. Butler. Plasma heparin: a unique, practical, submicrogram-sensitive assay. J Lab Clin Med. - V. 81. - N 2. 1973. 298-310.
22. Muhitdinov B, Heinze T, Normakhamatov N, Turaev A. Preparation of sodium cellulose sulfate oligomers by free-radical depolymerization. Carbohydr Polym [Internet]. 2017; 173: 631–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S0144861717306707
23. Muhitdinov B, Heinze T, Turaev A, Koschella A, Normakhamatov N. Homogenous synthesis of sodium cellulose sulfates with regulable low and high degree of substitutions with SO3/Py in N, N-dimethylacetamide/LiCl. Eur Polym J [Internet]. 2019; 119: 181–8. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0014305719312558
24. Linhardt R., J. Liu. Synthetic heparin. R. Linhardt, Cuur Opin Pharmacol. - 122. 2012. 217-219.
25. Ng H.J. Koh L.P., Lee L.H. Successful control of postsurgical bleeding by recombinant factor Vila in a renal failure patient given low molecular weight heparin and aspirin. Ann Hematol. -82 4. 2003. 257-258. DOI:10.1007/s00277-003-0633-1
26. Almedia-Lima J. Costa L., Silva N. Evaluating the possible genotoxic, mutagenic and tumor cell proliferation-inhibition effects of a non-anticoagulant, but antithrombotic algal heterofucan. J. Almedia-Lima, et al., J Appl Toxicol. -307. 2010. 708-715. doi.org/10.1002/jat.1547.
27. Nasirov K.E., Musaeva M.K., Khoshimov N.N., Raimova G.M., Turaev A.S., Muhitdinov B.I. / Influence of some sulphated polysaccharides on the platelet aggregation in normal and in patients with ischemic heart disease / International Journal of Psychosocial Rehabilitation. / 2020. Vol.24(8). 6976 - 6985. DOI: 10.37200/IJPR/V24I8/PR280715.
28. Cipriani, T.R., Gracher A.H.P., De Souza, Fonseca R.J.C., Belmiro C.L.R., Gorin P.A.J., Sassaki G.L., Mini L.M., Iaco M. Influence of molecular weight of chemically sulfated citrus pectin fractions on their antithrombotic and bleeding effects. T.R. Cipriani, Thrombosis and Haemostasis. -V 101, Issue 5. 2009. 860-866.
29. Nadjimova Kh.K., Khoshimov N.N., Musaeva M.K., Mukhitdinov B.I. "Fibrinolytic activity of polysaccharides with anticoagulant properties." Uzbek Biological Journal. 2020.1. 7-13.
30. Khoshimov N.N., Nasirov K.E., Eshbakova K.A. Research influence biological active agents in the course of regulation of functional activity of platelets and system of a haemostasis // European Journal of Medicine. 2015. Vol. 8, Is. 2, 88-93. DOI: 10.13187/ejm.2015.8.88
31. Luo L., Wu M., Xu L., Lian W., Xiang J., Lu F., Gao N., Xiao C., Wang S., Zhao J. Comparison of physicochemical characteristics and anticoagulant activities of polysaccharides from three sea cucumbers. Mar Drugs. - 112. 2013. 399-417.
32. Maas N.C. Gracher A.H., Sassaki G.L., Gorin P.A., Iacomini M., Cipriani T.R. Sulfation pattern of citrus pectin and its carboxy-reduced derivatives: Influence on anticoagulant and antithrombotic effects. Maas, Polymers. -V 89. -Issue 4. 2012. 1081-1087. DOI: 10.1016/j.carbpol.2012.03.070.
33. Silva T.H., Alves A., Popa E.G., Reys L.L., Gomes M.E., Sousa R.A., Silva S.S., Mano J.F., Reis R.L. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. T.H. Silva, Biomatter. -24. 2012. 278-289. doi:10.4161/biom.229470.
34. Kleinjan A., Aggarwal A., Van de Geer A. 2013. A worldwide survey to assess the current approach to the treatment of patients with cancer and venous thromboembolism. Thromb Haemost. -1105. 2013. 959-965.
35. Marlar R.A., Gausman J. The optimum number and types of plasma samples necessary for an accurate activated partial thromboplastin time-based heparin therapeutic range. Arch Pathol Lab Med.-1371. 2013. 77-82.
36. Olson J.D., Arkin C.F., Brandt J.T. College of American Pathologists Conference XXXI on laboratory monitoring of anticoagulant therapy: laboratory monitoring of unfractionated heparin therapy. Arch Pathol Lab Med.-122. 1998. 782-798.
37. Cuker A. Unfractionated heparin for the treatment of venous thromboembolism: best practices and areas of uncertainty. Semin Thromb Hemost. -386. 2012. 593-599. doi: 10.1055/s-0032-1319770.
38. Baglin T., Barrowcliffe T.W., Cohen A., Greaves M. British Committee for Standards in Haematology. Guidelines on the use and monitoring of heparin. Br J Haematol. -133. 2006. 19-34.
39. Bussey H.I. Problems with monitoring heparin anticoagulation. Pharmacotherapy. 19. 1999.рр.2-5.
40. James P., Coller B. Phenotyping bleeding. P. James, Curr Opin Hematol. -19. 2012. 406-412.
41. Suryanarayan D., Schulman S. Potential antidotes for reversal of old and new oral anticoagulants. Thromb Res.-133 2. 2014. 158-166.
42. Montalescot G. Cellular mechanisms of pulmonary vasoconstriction in an experimental model of protamine reversal of heparin. Arch Mal Coeur Vaiss. -834.1990. 555-560.
43. Avenarius H.J., Deinhardt J. Durchfuhrung und Auswertung von Aggregationstesten. Prakt. Anwend. Thrombozytenfunktionsdi-agn. Stuttgart – NewYork. 1980. 57-68.