Author(s):
Pinki, Deepika Rani, Himani Bajaj, Ranjit Singh
Email(s):
Pinkikamlendersingh@gmail.com
DOI:
10.52711/0974-360X.2021.00598
Address:
Pinki*, Deepika Rani, Himani Bajaj, Ranjit Singh
Adarsh Vijendra Institute of Pharmaceutical Sciences (Shobhit University), Gangoh, Saharanpur, U.P.
*Corresponding Author
Published In:
Volume - 14,
Issue - 6,
Year - 2021
ABSTRACT:
The present article reviews the diagnosis of Novel Corona Virus Disease (COVID-19) by using Real Time Reverse Transcription Polymerase Chain Reaction (RT-PCR). COVID-19 is a contagious disease caused by severe acute respiratory syndrome coronavirus2 (SARS-CoV-2), which affects upper and lower respiratory tract. In present scenario COVID-19 is considered as global public health emergency by World Health Organization (WHO) so, the detection and prevention of this disease is vital to control this emergency. RT-PCR is a highly sensitive laboratory method for the detection of SARS-CoV-2. It is based on rapid diagnosis of SARS-CoV-2 by qualitative detection of its nucleic acid sequence. This test locates the primer and probe sets in different regions in the genome of SARS-CoV-2.
Cite this article:
Pinki, Deepika Rani, Himani Bajaj, Ranjit Singh. SARS-COV-2 (COVID-19) and role of real time Reverse Transcription Polymerase Chain Reaction (RT-PCR) in its diagnosis. Research Journal of Pharmacy and Technology. 2021; 14(6):3437-0. doi: 10.52711/0974-360X.2021.00598
Cite(Electronic):
Pinki, Deepika Rani, Himani Bajaj, Ranjit Singh. SARS-COV-2 (COVID-19) and role of real time Reverse Transcription Polymerase Chain Reaction (RT-PCR) in its diagnosis. Research Journal of Pharmacy and Technology. 2021; 14(6):3437-0. doi: 10.52711/0974-360X.2021.00598 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-6-88
REFERENCES:
1. Jain N, Chaudhary A, Sharma J, Kumar V, De D, Tiwari R. A review of novel corona virus infection (Coronavirus Disease-19). Global Journal of Transfusion Medicine. 2020; 5: 22-26.
2. Salah H, Aufi I, Fadhil H, Alhamdani F. Human Coronavirus Species and their correlation as co-infection detected by Fast Real-Time RT-PCR. Research J. Pharm. and Tech 2020; 13:2578-2584. doi: 10.5958/0974-360X.2020.00459.X
3. Drexler JF, Corman VM, Drosten C. Ecology, Evolution and Classification of Bat Coronaviruses in the Aftermath of SARS. Antiviral res. 2014; 101:45-56. doi: 10.1016/j.antiviral.2013.10.013.
4. Tyrrell D, Myint S, Baron S. Coronavirus. Medical Microbiology,4th Edition. chapter 60.
5. Mor S, Saini P, Wangnoo S, Bawa T. Worldwide spread of COVID-19 Pandemic and risk factors among Co-morbid conditions especially Diabetes Mellitus in India. Research J. Pharm. and Tech 2020; 13(5): 2530-2532. doi: 10.5958/0974-360X.2020.00450.3
6. Sindhu TJ, Arathi. KN, Akhilesh KJ, Anju J, Binsiya KP, Blessy T, Elizabeth W. Antiviral screening of Clerodol derivatives as COV 2 main protease inhibitor in Novel Corona Virus Disease: In silico approaches. Asian J. Pharm. Tech. 2020; 10(2):60-64. doi: 10.5958/2231-5713.2020.00012.4
7. Mor S, Saini P, Wangnoo SK, Bawa T. Worldwide spread of COVID-19 Pandemic and risk factors among Co-morbid conditions especially Diabetes Mellitus in India. Research J. Pharm. and Tech 2020; 13(5):2530-2532. doi: 10.5958/0974-360X.2020.00450.3
8. Shereen M, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advance Research. 2020; 24: 91-98. doi: https://doi.org/10.1016/j.jare.2020.03.005
9. Milewska A, Nowak P,Owczarek K, ArturSzczepanski A, Zarebski M, Hoang A, Berniak K, Wojarski J, Zeglen S, Baster Z, Rajfur Z, Pyrc K. Entry of Human Coronavirus NL63 into the Cell. Journal of Virology. 2018;92: e01933-17. doi: 10.1128/JVI.01933-17
10. Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models After Coronavirus Infection. J Virol. 2019;93: e01815-18. doi: 10.1128/JVI.01815-18.
11. Weiss S, Navas-Martin S. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiol Mol Biol Rev. 2005; 69:635-64. doi: 10.1128/MMBR.69.4.635-664.2005.
12. Zhang J. Severe acute respiratory syndrome and its lesions in digestive system. World J Gastroenterol. 2003 Jun 15; 9:1135–1138.
13. Xu R, He J, Evans RM, Peng G, Field H, Yu D, Lee C, Luo H, Lin W, Lin P, Li L, Liang W, Lin J, Schnur A. Epidemiologic Clues to SARS Origin in China. Emerg Infect Dis. 2004; 10:1030–1037. doi: 10.3201/eid1006.030852
14. Emery S, Erdman D, Bowen M, Newton B, Winchell J, Meyer R, Tong S, Cook B, Holloway B, Mc Caustland K, Rota P, Bankamp B, Lowe L, Ksiazek T, Bellini W, Anderson L. Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for SARS-associated Coronavirus. Emerg Infect Dis. 2004 Feb; 10(2): 311–316. doi: 10.3201/eid1002.030759
15. Doya L, Dalloul D, Alkhayer M, Yazigi H. The importance of diagnosing Mycobacterium tuberculosis by real time PCR Compared with the approved diagnostic methods in the Clinical Laboratory. Research J. Pharm. and Tech 2018; 11(4): 1513-1515. doi: 10.5958/0974-360X.2018.00281.0
16. Kralic P, Ricchi M. A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything. Front. Microbiol. 2017 https://doi.org/10.3389/fmicb.2017.00108
17. Ali M, Shia J, Dhahar Al- marsome H. Detection of HSV and CMV in Pregnant and Miscarriage women by ELISA and real time PCR Assay. Research J. Pharm. and Tech 2019; 12(9):4090-4094.
doi: 10.5958/0974-360X.2019.00704.2
18. Deepak SA, Kottapalli KR, Rakwal R, Oros G, Rangappa KS, Iwahashi H, Masuo Y, Agrawal GK. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes. Curr Genomics. 2007; 8:234–251. doi: 10.2174/138920207781386960
19. Tahamtan A, Ardebili A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev Mol Diagn. 2020:1–2. doi: 10.1080/14737159.2020.1757437.
20. Garibyan L, Avashia N. Research Techniques Made Simple: Polymerase Chain Reaction (PCR). J Invest Dermatol. 2013;133: e6. doi: 10.1038/jid.2013.1
21. Libus J, Storchova H. Quantification of cDNA generated by reverse transcription of total RNA provides a simple alternative tool for quantitative RT-PCR normalization. Bio Techniques. 2006;41: 156-164. doi 10.2144/000112232
22. Overbergh L, Giulietti A, Valckx D, Decallonne B, Bouillon R, Mathieu C. The Use of Real-Time Reverse Transcriptase PCR for the Quantification of Cytokine Gene Expression. J Biomol Tech. 2003; 14: 33–43.
23. Holden, M. J.; Wang, L. (2008). "Quantitative Real-Time PCR: Fluorescent Probe Options and Issues". Standardization and Quality Assurance in Fluorescence Measurements II. Springer Series on Fluorescence. 2008.
24. Nagy A, Vitásková E, Černíková L, Křivda V, Jiřincová H, Sedlák K, Horníčková J, Havlíčková M. Evaluation of TaqMan qPCR System Integrating Two Identically Labelled Hydrolysis Probes in Single Assay. Sci Rep. 2017;7: 41392. https://doi.org/10.1038/srep41392 .
25. Liu H, Wang H, Shi Z, Wang H, Yang C, Silke S, Tan W, Lu Z. TaqMan probe array for quantitative detection of DNA targets. Nucleic Acids Res. 2006; 34(1): e4.
26. Monroy-Contreras R, Vaca L. Molecular Beacons: Powerful Tools for Imaging RNA in Living Cells. Journal of Nucleic Acids. 2011: 741723 doi:10.4061/2011/741723.
27. Bhosale AV, Hardikar SR, Patil Naresh, Bhujbal PU, Khirsagar AA, Malvankar SR. Oligonucleotide Based Therapeutics: Aptamers. Research J. Pharm. and Tech. 2009;2: 449-455.
28. Wong ML, Medrano JF. "Real-time PCR for mRNA quantitation". Bio Techniques. 2005;39: 75–85
29. Sharkey FH, Banat IM, Marchant R. "Detection and quantification of gene expression in environmental bacteriology". Appl. Environ. Microbiol. 2004;70: 3795–806.