Author(s): Jinu Avarachan, Anitta Augustine, Pallavi Mahadev Shinde, Venkatesh Gunasekaran

Email(s): gvenkatpharma@gmail.com , jinuavarachan333@gmail.com , anittaaugustine95@gmail.com , pallavishinde7200@gmail.com

DOI: 10.52711/0974-360X.2021.00688   

Address: Jinu Avarachan, Anitta Augustine, Pallavi Mahadev Shinde, Venkatesh Gunasekaran*
Department of Pharmacology, KMCH College of Pharmacy, Tamil Nadu Dr MGR Medical University, Tamil Nadu, Coimbatore, India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 7,     Year - 2021


ABSTRACT:
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, belonging to the nuclear receptor family, which has high expression of three structurally homologous PPARs isotypes (PPARa, PPARß/d, and PPAR?) in brain. Several studies have discovered role of PPARs in oxidative stress, mitochondrial dysfunction, neuroinflammation and production of the toxic proteins in various neurodegenerative disorders such as Parkinson disease, Alzheimer’s disease, Huntington disease, Amyotrophic Lateral Sclerosis, Multiple sclerosis etc. Currently available drugs provide symptomatic relief, but disease progression cannot be stopped, because of their unclear molecular approach. The ability of PPAR to modulate the pathways involved in these conditions paved a path for future studies. Due to increasing challenges to treat central nervous system related disorders, hence PPARs have attracted much attention nowadays. In this review, we discussed various mechanisms of PPARs subtypes in neurodegenerative disorders. We congregate the molecular evidences which support PPARs as a therapeutic target to treat neurodegenerative disorders from preclinical and clinical studies and provide a basis for the potential therapeutic use of PPAR ligands in human diseases.


Cite this article:
Jinu Avarachan, Anitta Augustine, Pallavi Mahadev Shinde, Venkatesh Gunasekaran. A Mechanistic approach of Peroxisome Proliferator-Activated Receptors and its subtypes on Clinical and preclinical model of Neurodegenerative disorders. Research Journal of Pharmacy and Technology. 2021; 14(7):3967-5. doi: 10.52711/0974-360X.2021.00688

Cite(Electronic):
Jinu Avarachan, Anitta Augustine, Pallavi Mahadev Shinde, Venkatesh Gunasekaran. A Mechanistic approach of Peroxisome Proliferator-Activated Receptors and its subtypes on Clinical and preclinical model of Neurodegenerative disorders. Research Journal of Pharmacy and Technology. 2021; 14(7):3967-5. doi: 10.52711/0974-360X.2021.00688   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-7-85


REFERENCES:
1.    Agarwal S, Yadav A, Chaturvedi RK. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun. 2017;483(4): 1166-1177.
2.    Warden A, Truitt J, Merriman M, Ponomareva O, Jameson K, Ferguson LB, Mayfield RD, Harris RA. Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep. 2016;6: 27618.
3.    Oliveira AC, Bertollo CM, Rocha LT, Nascimento EB Jr, Costa KA, Coelho MM. Antinociceptive and antiedematogenic activities of fenofibrate, an agonist of PPAR alpha, and pioglitazone, an agonist of PPAR gamma. Eur J Pharmacol. 2007;561(1-3): 194-201.
4.    Merlin NJ, Nair CC, Dharan SS. Peroxisome Proliferator-Activated Receptors (PPARs)–A Review. Asian Journal of Research in Pharmaceutical Science. 2014;4(1): 32-7.
5.    Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur J Med Chem. 2019;166: 502-513.
6.    Marion-Letellier R, Savoye G, Ghosh S. Fatty acids, eicosanoids and PPAR gamma. Eur J Pharmacol. 2016 Aug 15;785: 44-49.
7.    Chigurupati S, Dhanaraj SA, Balakumar P. A step ahead of PPARγ full agonists to PPARγ partial agonists: therapeutic perspectives in the management of diabetic insulin resistance. Eur J Pharmacol. 2015; 755:50-7.
8.    Jiang Q, Heneka M, Landreth GE. The role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in Alzheimer's disease: therapeutic implications. CNS Drugs. 2008;22(1): 1-14.
9.    Escribano L, Simón AM, Pérez-Mediavilla A, Salazar-Colocho P, Del Río J, Frechilla D. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model. Biochem Biophys Res Commun. 2009; 379(2): 406-10.
10.    Bordet R, Ouk T, Petrault O, Gelé P, Gautier S, Laprais M, Deplanque D, Duriez P, Staels B, Fruchart JC, Bastide M. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans.2006;34(Pt 6): 13416.
11.    Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature. 1998; 395(6698): 137-43.
12.    Kallenberger BC, Love JD, Chatterjee VK, Schwabe JW. A dynamic mechanism of nuclear receptor activation and its perturbation in a human disease. Nat Struct Biol. 2003 Feb;10(2): 136-40.
13.    Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999;20(5): 649-88.
14.    Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A, Evans RM. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev. 1992;6(3): 329-44.
15.    Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F. Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature.2008;456(7220): 350-6.
16.    Bissonnette RP, Brunner T, Lazarchik SB, Yoo NJ, Boehm MF, Green DR, Heyman RA. 9-cis retinoic acid inhibition of activation-induced apoptosis is mediated via regulation of fas ligand and requires retinoic acid receptor and retinoid X receptor activation. Mol Cell Biol. 1995;15(10): 5576-85.
17.    Schulman IG, Li C, Schwabe JW, Evans RM. The phantom ligand effect: allosteric control of transcription by the retinoid X receptor. Genes Dev. 1997;11(3): 299-308.
18.    Westin S, Kurokawa R, Nolte RT, Wisely GB, McInerney EM, Rose DW, Milburn MV,Rosenfeld MG, Glass CK. Interactions controlling the assembly of nuclear- receptor heterodimers and co-activators. Nature. 1998;395(6698): 199-202.
19.    Vivat-Hannah V, Bourguet W, Gottardis M, Gronemeyer H. Separation of retinoid X receptor homo- and heterodimerization functions. Mol Cell Biol. 2003;23(21): 7678-88.
20.    Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature. 1995;375(6530): 377-82.
21.    Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature. 1992;358(6389): 771-4.
22.    Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 2012;16(6): 706-22.
23.    Guan HP, Ishizuka T, Chui PC, Lehrke M, Lazar MA. Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes. Genes Dev. 2005;19(4): 453-61.
24.    Xu L, Glass CK, Rosenfeld MG. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev. 1999;9(2): 140-7.
25.    Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6): 361-70.
26.    Krishna PN, Mohite YM. Insilico Activity Prediction of Thiazolidinediones Derivatives. Asian Journal of Pharmaceutical Analysis. 2018;8(1): 39-44.
27.    Moreno S, Farioli-Vecchioli S, Cerù MP. Immunolocalization of peroxisomeproliferator-activated receptors and retinoid X receptors in the adult rat CNS.Neuroscience. 2004;123(1): 131-45.
28.    Xu J, Storer PD, Chavis JA, Racke MK, Drew PD. Agonists for the peroxisomeproliferator-activated receptor-alpha and the retinoid X receptor inhibit inflammatory responses of microglia. J Neurosci Res. 2005;81(3): 403-11.
29.    Kersten S, Stienstra R. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie. 2017;136: 75-84.
30.    Roy A, Jana M, Corbett GT, Ramaswamy S, Kordower JH, Gonzalez FJ, Pahan K.Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor α. Cell Rep. 2013;4(4): 724-37.
31.    Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann JM, Wisely GB, Willson TM, Kliewer SA, Milburn MV. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell. 1999; 3(3): 397-403.
32.    Auboeuf D, Rieusset J, Fajas L, Vallier P, Frering V, Riou JP, Staels B,Auwerx J, Laville M, Vidal H. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes. 1997;46(8): 1319-27.
33.    Kalinin S, Richardson JC, Feinstein DL. A PPARdelta agonist reduces amyloid burden and brain inflammation in a transgenic mouse model of Alzheimer's disease. Curr Alzheimer Res. 2009; 6(5): 431-7.
34.    Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci U S A. 1997; 94(9): 4312-7.
35.    Graham TL, Mookherjee C, Suckling KE, Palmer CN, Patel L. The PPARdelta agonist GW0742X reduces atherosclerosis in LDLR(-/-) mice. Atherosclerosis. 2005; 181(1): 29-37.
36.    Balakumar P, Rose M, Ganti SS, Krishan P, Singh M. PPAR dual agonists: are they opening Pandora's Box? Pharmacol Res. 2007; 56(2) :91-8.
37.    Fajas L, Auboeuf D, Raspé E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem. 1997;272(30): 18779-89.
38.    Balakumar P, Rose M, Ganti SS, Krishan P, Singh M. PPAR dual agonists: are they opening Pandora's Box? Pharmacol Res. 2007; 56(2): 91-8.
39.    Sanmugam K. Depression is a risk factor for Alzheimer disease-review. Research Journal of Pharmacy and Technology. 2015; 8(8): 1056-8.
40.    Galimberti D, Scarpini E. Pioglitazone for the treatment of Alzheimer's disease. Expert OpinInvestig Drugs. 2017; 26(1): 97-101.
41.    D'Orio B, Fracassi A, Ceru MP, Moreno S. Targeting PPARalpha in Alzheimer's disease. Current Alzheimer Research. 2018; 15(4): 345-54.
42.    Roy A, Jana M, Kundu M, Corbett GT, Rangaswamy SB, Mishra RK, Luan CH, Gonzalez FJ, Pahan K. HMG-CoA Reductase Inhibitors Bind to PPARα to Upregulate Neurotrophin Expression in the Brain and Improve Memory in Mice. Cell Metab.2015; 22(2): 253-65.
43.    Lekshmi RS, Shanmugasundaram P. Neuroprotective Properties of Statins. Research Journal of Pharmacy and Technology. 2018;11(8): 3581-4.]
44.    Zhang H, Gao Y, Qiao PF, Zhao FL, Yan Y. Fenofibrate reduces amyloidogenic processing of APP in APP/PS1 transgenic mice via PPAR-α/PI3-K pathway. Int J Dev Neurosci. 2014; 38: 223-31.
45.    Zhang H, Gao Y, Qiao PF, Zhao FL, Yan Y. PPAR-α agonist regulates amyloid-β generation via inhibiting BACE-1 activity in human neuroblastoma SH-SY5Y cells transfected with APPswe gene. Mol Cell Biochem. 2015;408(1-2): 37-46.
46.    Subamalani S, Sasikumar A, Vijayaragavan R, Senthilkumar S, Kumar SM, Raj LS, Kannan I. Effect of Acorus calamus Linn on histomorphometric changes in the CA1 and CA3 regions of Hippocampus in Wistar Albino rats. Research Journal of Pharmacy and Technology. 2019;12(7): 3531-6.
47.    Koo JH, Kwon IS, Kang EB, Lee CK, Lee NH, Kwon MG, Cho IH, Cho JY. Neuroprotective effects of treadmill exercise on BDNF and PI3-K/Akt signaling pathway in the cortex of transgenic mice model of Alzheimer's disease. J Exerc Nutrition Biochem. 2013;17(4): 151-60.
48.    Chandra S, Pahan K. Gemfibrozil, a Lipid-Lowering Drug, Lowers Amyloid Plaque Pathology and Enhances Memory in a Mouse Model of Alzheimer’s Disease via Peroxisome Proliferator-Activated Receptor α. Journal of Alzheimer's disease reports. 2019;3(1): 149-68.
49.    Combs CK, Bates P, Karlo JC, Landreth GE. Regulation of beta-amyloid stimulated proinflammatory responses by peroxisome proliferator-activated receptor alpha. Neurochem Int. 2001; 39(5-6):449-57.
50.    Corbett GT, Gonzalez FJ, Pahan K. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP. Proc NatlAcad Sci U S A. 2015;112(27):8445-50.
51.    Scuderi C, Valenza M, Stecca C, Esposito G, Carratù MR, Steardo L. Palmitoylethanolamide exerts neuroprotective effects in mixed neuroglialcultures and organotypic hippocampal slices via peroxisome proliferator-activated receptor-α. J Neuroinflammation. 2012;9:49.
52.    Brune S, Kölsch H, Ptok U, Majores M, Schulz A, Schlosser R, Rao ML, Maier W, Heun R. Polymorphism in the peroxisome proliferator-activated receptor alphagene influences the risk for Alzheimer's disease. J Neural Transm (Vienna). 2003Sep;110(9):1041-50.
53.    Khorasani A, Abbasnejad M, Esmaeili-Mahani S. Phytohormone abscisic acid ameliorates cognitive impairments in streptozotocin-induced rat model of Alzheimer's disease through PPARβ/δ and PKA signaling. Int J Neurosci. 2019;129(11):1053-1065.
54.    Konttinen H, Gureviciene I, Oksanen M, Grubman A, Loppi S, Huuskonen MT, Korhonen P, Lampinen R, Keuters M, Belaya I, Tanila H, Kanninen KM, Goldsteins G, Landreth G, Koistinaho J, Malm T. PPARβ/δ-agonist GW0742 ameliorates dysfunction in fatty acid oxidation in PSEN1ΔE9 astrocytes. Glia. 2019;67(1):146-159.
55.    Malm T, Mariani M, Donovan LJ, Neilson L, Landreth GE. Activation of thenuclear receptor PPARδ is neuroprotective in a transgenic mouse model of Alzheimer's disease through inhibition of inflammation. J Neuroinflammation. 2015;12:7.
56.    Abdel-Rahman EA, Bhattacharya S, Buabeid M, Majrashi M, Bloemer J, Tao YX, Dhanasekaran M, Escobar M, Amin R, Suppiramaniam V. PPAR-δ Activation Ameliorates Diabetes-Induced Cognitive Dysfunction by Modulating Integrin-linked Kinase and AMPA Receptor Function. J Am Coll Nutr. 2019;38(8):693-702.
57.    An YQ, Zhang CT, Du Y, Zhang M, Tang SS, Hu M, Long Y, Sun HB, Hong H. PPARδ agonist GW0742 ameliorates Aβ1-42-induced hippocampal neurotoxicity in mice. Metab Brain Dis. 2016;31(3):663-71.
58.    Barroso E, del Valle J, Porquet D, Vieira Santos AM, Salvadó L, Rodríguez- Rodríguez R, Gutiérrez P, Anglada-Huguet M, Alberch J, Camins A, Palomer X, Pallàs M, Michalik L, Wahli W, Vázquez-Carrera M. Tau hyperphosphorylation and increased BACE1 and RAGE levels in the cortex of PPARβ/δ-null mice. Biochim Biophys Acta. 2013;1832(8):1241-8.
59.    Kalinin S, Richardson JC, Feinstein DL. A PPARdelta agonist reduces amyloidburden and brain inflammation in a transgenic mouse model of Alzheimer's disease. Curr Alzheimer Res. 2009;6(5):431-7.
60.    Lee WJ, Ham SA, Lee GH, Choi MJ, Yoo H, Paek KS, Lim DS, Hong K, Hwang JS,Seo HG. Activation of peroxisome proliferator-activated receptor delta suppresses BACE1 expression by up-regulating SOCS1 in a JAK2/STAT1-dependent manner. J Neurochem. 2019;151(3):370-385..
61.    Benedetti E, Di Loreto S, D'Angelo B, Cristiano L, d'Angelo M, Antonosante A, Fidoamore A, Golini R, Cinque B, Cifone MG, Ippoliti R, Giordano A, Cimini A. The PPARβ/δ Agonist GW0742 Induces Early Neuronal Maturation of Cortical Post- Mitotic Neurons: Role of PPARβ/δ in Neuronal Maturation. J Cell Physiol. 2016;231(3):597-606.
62.    Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C,O'Banion K, Klockgether T, Van Leuven F, Landreth GE. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain. 2005;128(Pt 6):1442-53.
63.    Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci. 2012;32(48):17321-31.
64.    Medrano-Jiménez E, Carrillo IJ, Pedraza-Escalona M, Ramírez-Serrano CE, Álvarez-Arellano L, Cortés-Mendoza J, Herrera-Ruiz M, Jiménez-Ferrer E, Zamilpa A, Tortoriello J, Pedraza-Alva G. Malvaparviflora extract ameliorates the deleterious effects of a high fat diet on the cognitive deficit in a mouse model of Alzheimer’s disease by restoring microglial function via a PPAR-γ-dependent mechanism. Journal of neuroinflammation. 2019;16(1):143.
65.    Wang D, Dong X, Wang C. Honokiol ameliorates amyloidosis and neuroinflammation and improves cognitive impairment in Alzheimer’s disease transgenic mice. Journal of Pharmacology and Experimental Therapeutics. 2018;366(3):470-8.
66.    Zhang M, Qian C, Zheng ZG, Qian F, Wang Y, Thu PM, Zhang X, Zhou Y, Tu L, LiuQ, Li HJ, Yang H, Li P, Xu X. Jujuboside A promotes Aβ clearance and ameliorates cognitive deficiency in Alzheimer's disease through activating Axl/HSP90/PPARγpathway. Theranostics. 2018;8(15):4262-4278.
67.    Vishnoi A, Rani S. MiRNA Biogenesis and Regulation of Diseases: An Overview.MethodsMol Biol. 2017;1509:1-10,Ullah S, John P, Bhatti A. MicroRNAs with a role in gene regulation and in human diseases. MolBiol Rep. 2014;41(1):225-32.
68.    Liu Y, Zhang Y, Liu P, Bai H, Li X, Xiao J, Yuan Q, Geng S, Yin H, Zhang H, Wang Z, Li J, Wang S, Wang Y. MicroRNA-128 knockout inhibits the development of Alzheimer's disease by targeting PPARγ in mouse models. Eur J Pharmacol. 2019;843:134-144.
69.    Tsukuda K, Mogi M, Iwanami J, Min LJ, Sakata A, Jing F, Iwai M, Horiuchi M. Cognitive deficit in amyloid-beta-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator- activated receptor-gamma activation. Hypertension. 2009;54(4):782-7.
70.    Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, Lukiw WJ, Bazan NG. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer's disease models. PLoSOne. 2011;6(1):e15816.
71.    Chamberlain S, Gabriel H, Strittmatter W, Didsbury J. An Exploratory Phase IIa Study of the PPAR delta/gamma Agonist T3D-959 Assessing Metabolic and Cognitive Function in Subjects with Mild to Moderate Alzheimer's Disease. J Alzheimers Dis. 2020;73(3):1085-1103.
72.    Benedusi V, Martorana F, Brambilla L, Maggi A, Rossi D. The peroxisome proliferator-activated receptor γ (PPARγ) controls natural protective mechanisms against lipid peroxidation in amyotrophic lateral sclerosis. J Biol Chem. 2012;287(43):35899-911.
73.    Kiaei M, Kipiani K, Chen J, Calingasan NY, Beal MF. Peroxisome proliferator- activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol. 2005;191(2):331-6.
74.    Shibata N, Kawaguchi-Niida M, Yamamoto T, Toi S, Hirano A, Kobayashi M. Effects of the PPARgamma activator pioglitazone on p38 MAP kinase and IkappaBalpha in the spinal cord of a transgenic mouse model of amyotrophic lateral sclerosis. Neuropathology. 2008;28(4):387-98.
75.    Dupuis L, Dengler R, Heneka MT, Meyer T, Zierz S, Kassubek J, Fischer W, Steiner F, Lindauer E, Otto M, Dreyhaupt J. A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. PloS one. 2012;7(6):e37885.
76.    Nance MA, US Huntington Disease Genetic Testing Group. Genetic testing of children at risk for Huntington's disease. Neurology. 1997;49(4):1048-53.).
77.    Sharma S, Taliyan R. Transcriptional dysregulation in Huntington’s disease: the role of histone deacetylases. Pharmacological research. 2015;100:157-69.
78.    Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, Lazarowski ER, Damian VA, Masliah E, La Spada AR. PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Science translational medicine. 2012;4(142):142ra97-.)
79.    Lee M, Ban JJ, Chung JY, Im W, Kim M. Amelioration of Huntington's disease phenotypes by Beta-Lapachone is associated with increases in Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation. PloS one. 2018;13(5).
80.    Chiang MC, Chen CM, Lee MR, Chen HW, Chen HM, Wu YS, Hung CH, Kang JJ, Chang CP, Chang C, Wu YR. Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma. Human molecular genetics. 2010;19(20):4043-58.
81.    Quintanilla RA, Jin YN, Fuenzalida K, Bronfman M, Johnson GV. Rosiglitazone Treatment Prevents Mitochondrial Dysfunction in Mutant Huntingtin-expressing cells possible role of peroxisome proliferator-activated receptor-γ (pparγ) in the pathogenesis of huntington disease. Journal of biological chemistry. 2008;283(37):25628-37.
82.    Jin J, Albertz J, Guo Z, Peng Q, Rudow G, Troncoso JC, Ross CA, Duan W. Neuroprotective effects of PPAR‐γ agonist rosiglitazone in N171‐82Q mouse model of Huntington's disease. Journal of neurochemistry. 2013;125(3):410-9.
83.    Johri A, Calingasan NY, Hennessey TM, Sharma A, Yang L, Wille E, Chandra A, Beal MF. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington's disease. Human molecular genetics. 2012;21(5):1124-37.
84.    Dickey AS, Pineda VV, Tsunemi T, Liu PP, Miranda HC, Gilmore-Hall SK, Lomas N, Sampat KR, Buttgereit A, Torres MJ, Flores AL. PPAR-δ is repressed in Huntington's disease, is required for normal neuronal function and can be targeted therapeutically. Nature medicine. 2016;22(1):37.
85.    Dickey AS, Sanchez DN, Arreola M, Sampat KR, Fan W, Arbez N, Akimov S, Van Kanegan MJ, Ohnishi K, Gilmore-Hall SK, Flores AL. PPARδ activation by bexarotene promotes neuroprotection by restoring bioenergetic and quality control homeostasis. Science translational medicine. 2017 Dec 6;9(419):eaal2332.
86.    Stinissen P, Medaer R, Raus J. Myelin reactive T cells in the autoimmunepathogenesis of multiple sclerosis. Mult Scler. 1998;4(3):203-11.
87.    Varshney P, Saini P. An Overview of DRF in the treatment of Multiple Sclerosis. Research Journal of Pharmacy and Technology. 2020;13(6):2992-6.
88.    Xu J, Racke MK, Drew PD. Peroxisome proliferator-activated receptor-alpha agonist fenofibrate regulates IL-12 family cytokine expression in the CNS:relevance to multiple sclerosis. J Neurochem. 2007;103(5):1801-10.
89.    Xu J, Chavis JA, Racke MK, Drew PD. Peroxisome proliferator-activated receptor-alpha and retinoid X receptor agonists inhibit inflammatory responses of astrocytes. J Neuroimmunol. 2006;176(1-2):95-105.
90.    Dasgupta S, Roy A, Jana M, Hartley DM, Pahan K. Gemfibrozil ameliorates relapsing-remitting experimental autoimmune encephalomyelitis independent of peroxisome proliferator-activated receptor-alpha. Mol Pharmacol. 2007;72(4):934-46.
91.    Balakrishnan N, Panda AB, Raj NR, Shrivastava A, Prathani R. The evaluation of nitric oxide scavenging activity of Acalypha indica Linn root. Asian Journal of Research in Chemistry. 2009;2(2):148-50.
92.    Kanakasabai S, Walline CC, Chakraborty S, Bright JJ. PPARδ deficient mice develop elevated Th1/Th17 responses and prolonged experimental autoimmune encephalomyelitis. Brain Res. 2011;1376:101-12.
93.    Polak PE, Kalinin S, Dello Russo C, Gavrilyuk V, Sharp A, Peters JM, Richardson J, Willson TM, Weinberg G, Feinstein DL. Protective effects of a peroxisome proliferator-activated receptor-beta/delta agonist in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2005;168(1-2):65-75.
94.    Xu J, Zhang Y, Xiao Y, Ma S, Liu Q, Dang S, Jin M, Shi Y, Wan B, Zhang Y. Inhibition of 12/15-lipoxygenase by baicalein induces microglia PPARβ/δ: a potential therapeutic role for CNS autoimmune disease. Cell Death Dis. 2013;4(4):e569.
95.    Kanakasabai S, Chearwae W, Walline CC, Iams W, Adams SM, Bright JJ. Peroxisome proliferator-activated receptor delta agonists inhibit T helper type 1 (Th1) and Th17 responses in experimental allergic encephalomyelitis. Immunology. 2010;130(4):572-88.
96.    Diab A, Hussain RZ, Lovett-Racke AE, Chavis JA, Drew PD, Racke MK. Ligands for the peroxisome proliferator-activated receptor-gamma and the retinoid X receptor exert additive anti-inflammatory effects on experimental autoimmune encephalomyelitis. J Neuroimmunol. 2004;148(1-2):116-26.
97.    Natarajan C, Bright JJ. Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun. 2002;3(2):59-70.
98.    Raikwar HP, Muthian G, Rajasingh J, Johnson C, Bright JJ. PPARgamma antagonists exacerbate neural antigen-specific Th1 response and experimental allergic encephalomyelitis. J Neuroimmunol. 2005;167(1-2):99-107.
99.    Raikwar HP, Muthian G, Rajasingh J, Johnson CN, Bright JJ. PPARgamma antagonists reverse the inhibition of neural antigen-specific Th1 response andexperimental allergic encephalomyelitis by Ciglitazone and 15-deoxy- Delta12,14-prostaglandin J2. J Neuroimmunol. 2006;178(1-2):76-86.
100.    Diab A, Deng C, Smith JD, Hussain RZ, Phanavanh B, Lovett-Racke AE, Drew PD, Racke MK. Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy- Delta(12,14)-prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol. 2002;168(5):2508-15.
101.    Schmidt S, Moric E, Schmidt M, Sastre M, Feinstein DL, Heneka MT. Anti- inflammatory and antiproliferative actions of PPAR-gamma agonists on T lymphocytes derived from MS patients. J Leukoc Biol. 2004;75(3):478-85.
102.    Kahale VP, Upadhay PR, Mhaiskar AJ, Shelat PS, Mundhada DR. To Access the Efficacy of Rutin on 6-Hydroxydopamine induced Animal Model of Memory Impairment in Parkinson's Disease. Research Journal of Pharmacology and Pharmacodynamics. 2013;5(6):331-6,
103.    Baul HS, Rajiniraja M. Molecular Docking Studies of Selected Flavonoids on Inducible Nitric Oxide Synthase (INOS) in Parkinson's Disease. Research Journal of Pharmacy and Technology. 2018;11(8):3685-8.
104.    Agarwal S, Yadav A, Chaturvedi RK. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun. 2017;483(4):1166-1177.
105.    Moraes LA, Piqueras L, Bishop-Bailey D. Peroxisome proliferator-activated receptors and inflammation. Pharmacology & therapeutics. 2006;110(3):371-85.
106.    Machado MM, Bassani TB, Cóppola-Segovia V, Moura EL, Zanata SM, Andreatini R, Vital MA. PPAR-γ agonist pioglitazone reduces microglial proliferation and NF-κB activation in the substantia nigra in the 6-hydroxydopamine model of Parkinson’s disease. Pharmacological reports. 2019;71(4):556-64.
107.    Bonato JM, Bassani TB, Milani H, Vital MA, de Oliveira RM. Pioglitazone reduces mortality, prevents depressive-like behavior, and impacts hippocampal neurogenesis in the 6-OHDA model of Parkinson's disease in rats. Experimental neurology. 2018;300:188-200.
108.    Chaturvedi RK, Beal MF. PPAR: a therapeutic target in Parkinson’s disease. Journal of neurochemistry. 2008;106(2):506-18.
109.    Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB. Protection by pioglitazone in the MPTP model of Parkinson's disease correlates with IκBα induction and block of NFκB and iNOS activation. Journal of neurochemistry. 2004;88(2):494-501.
110.    Ulusoy GK, Celik T, Kayir H, Gürsoy M, Isik AT, Uzbay TI. Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson's disease. Brain research bulletin. 2011;85(6):380-4.
111.    Wang L, Hong J, Wu Y, Liu G, Yu W, Chen L. Seipin deficiency in mice causes loss of dopaminergic neurons via aggregation and phosphorylation of α-synuclein and neuroinflammation. Cell death & disease. 2018;9(5):1-3.
112.    Baul HS, Rajiniraja M. Favorable binding of Quercetin to α-Synuclein as potential target in Parkinson disease: An Insilico approach. Research Journal of Pharmacy and Technology. 2018;11(1):203-6.
113.    Normando EM, Davis BM, De Groef L, Nizari S, Turner LA, Ravindran N, Pahlitzsch M, Brenton J, Malaguarnera G, Guo L, Somavarapu S. The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson’s disease: evidence for a neuroprotective effect of rosiglitazone in the eye and brain. Acta neuropathologica communications. 2016;4(1):86.
114.    Corona JC, de Souza SC, Duchen MR. PPARγ activation rescues mitochondrial function from inhibition of complex I and loss of PINK1. Experimental neurology. 2014;253:16-27.
115.    Nevin DK, Peters MB, Carta G, Fayne D, Lloyd DG. Integrated virtual screening for the identification of novel and selective peroxisome proliferator-activated receptor (PPAR) scaffolds. Journal of medicinal chemistry. 2012;55(11):4978-89.
116.    Xing B, Xin T, Hunter RL, Bing G. Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. Journal of neuroinflammation. 2008;5(1):4.
117.    Brakedal B, Flønes I, Reiter SF, Torkildsen Ø, Dölle C, Assmus J, Haugarvoll K, Tzoulis C. Glitazone use associated with reduced risk of Parkinson's disease. Movement Disorders. 2017;32(11):1594-9.
118.    Iwashita A, Muramatsu Y, Yamazaki T, Muramoto M, Kita Y, Yamazaki S, Mihara K, Moriguchi A, Matsuoka N. Neuroprotective efficacy of the peroxisome proliferator-activated receptor δ-selective agonists in vitro and in vivo. Journal of Pharmacology and Experimental Therapeutics. 2007;320(3):1087-96.
119.    Tong Q, Wu L, Gao Q, Ou Z, Zhu D, Zhang Y. PPARβ/δ agonist provides neuroprotection by suppression of IRE1α–Caspase-12-mediated endoplasmic reticulum stress pathway in the rotenone rat model of Parkinson’s disease. Molecular neurobiology. 2016;53(6):3822-31.
120.    R Das N, P Gangwal R, V Damre M, T Sangamwar A, S Sharma S. A PPAR-β/δ agonist is neuroprotective and decreases cognitive impairment in a rodent model of Parkinson’s disease. Current neurovascular research. 2014;11(2):114-24.
121.    Kreisler A, Gelé P, Wiart JF, Lhermitte M, Destée A, Bordet R. Lipid-lowering drugs in the MPTP mouse model of Parkinson's disease: fenofibrate has a neuroprotective effect, whereas bezafibrate and HMG-CoA reductase inhibitors do not. Brain research. 2007;1135:77-84.
122.    Barbiero JK, Santiago R, Tonin FS, Boschen S, da Silva LM, de Paula Werner MF, da Cunha C, Lima MM, Vital MA. PPAR-α agonist fenofibrate protects against the damaging effects of MPTP in a rat model of Parkinson's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2014;53:35-44.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available