Author(s): Murad Alam, Kifayat Ullah Shah, Kamran Ahmad Khan, Asif Nawaz, Hadia Bibi, Ghulam Razaque, Zahid Rasul Niazi, Mulham Alfatama

Email(s): mulham@unisza.edu.my

DOI: 10.52711/0974-360X.2021.00762   

Address: Murad Alam1, Kifayat Ullah Shah1, Kamran Ahmad Khan1, Asif Nawaz1, Hadia Bibi2, Ghulam Razaque3, Zahid Rasul Niazi4, Mulham Alfatama5*
1Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Khyber Pakhtukhwa, Pakistan.
2Department of Pharmacy, Women Institute of Learning, Abottabad, Pakistan.
3Department of Pharmaceutics, Faculty of Pharmacy, University of Balochistan, Quetta, Pakistan.
4Department of Basic Medical Sciences, Faculty of Pharmacy, University of Balochistan, Quetta, Pakistan.
5Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Malaysia.
*Corresponding Author

Published In:   Volume - 14,      Issue - 8,     Year - 2021


ABSTRACT:
The development of floating tablets with required buoyancy, lag time, and controlling release behaviour of drugs at target site is truly interesting and challenging task for researchers. Current study is concerned with the designing of effervescent floating controlled release tablets of clarithromycin and famotidine to treat peptic ulcer due to Helicobacter pylori (H. pylori) infection. Five formulations (F1-F5) were prepared, among which three formulations were of bilayered tablets while the remaining were included as plain tablets. These tablets were prepared by direct compression method using hydroxypropyl methylcellulose (HPMC) K100M, HPMC K4M and sodium bicarbonate as swelling and floating agents respectively. The qualitative tests such as thickness, hardness, weight variation, friability and uniformity of content were performed to ensure the quality of prepared tablets. The floating lag time of all formulations ranged from 14 to 20 seconds. The effervescent floating tablets with HPMC K4M (F1, F3 & F5) attained the total floating time of more than 12 hours, while tablets prepared with HPMC K100M (F2 & F4) achieved the total floating time of less than 7 hours. This difference in floating behaviour could be due to the variation in compaction and flow properties of the two polymers. The formulations with HPMC K100M (F2 & F4) have comparatively more sustained drug release properties when compared to F1, F3 and F4 using HPMC K4M as swelling and floating polymers. This could be attributed to better compaction of HPMC K100M. The prepared tablets follow non-Fickian diffusion kinetics. Overall, these floating controlled release effervescent bilayer and plain tablets may enhance the compliance and therapeutic outcomes of clarithromycin and famotidine in treatment of H. pylori.


Cite this article:
Murad Alam, Kifayat Ullah Shah, Kamran Ahmad Khan, Asif Nawaz, Hadia Bibi, Ghulam Razaque, Zahid Rasul Niazi, Mulham Alfatama. Formulation and in vitro Evaluation of Effervescent Bilayer Floating Controlled Release Tablets of Clarithromycin and Famotidine. Research Journal of Pharmacy and Technology. 2021; 14(8):4391-8. doi: 10.52711/0974-360X.2021.00762

Cite(Electronic):
Murad Alam, Kifayat Ullah Shah, Kamran Ahmad Khan, Asif Nawaz, Hadia Bibi, Ghulam Razaque, Zahid Rasul Niazi, Mulham Alfatama. Formulation and in vitro Evaluation of Effervescent Bilayer Floating Controlled Release Tablets of Clarithromycin and Famotidine. Research Journal of Pharmacy and Technology. 2021; 14(8):4391-8. doi: 10.52711/0974-360X.2021.00762   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-8-68


REFERENCES:
1.    Bhoi GS, Pimpodkar N V. Medicated Chewing Gum: An Innovative approach for Oral Drug Delivery System. Asian J Pharm Technol. 2015; 5(1): 50-55.
2.    Kumar R, Philip A. Gastroretentive Dosage Forms for Prolonging Gastric Residence Time. Int J Pharm Med. 2007; 21: 157-171. doi:10.2165/00124363-200721020-00005
3.    Firke S, Roge A, Ghiware N, Dhoot SB, Vadwalkar SM. Floating Microspheres as Gastro-Retentive Drug Delivery System: A Review. Res J Pharm Technol. 2013; 6(12): 1452-1458.
4.    Nayakulu BR, Kumar NR, Kumar CK, Abhilash PR. Formulation and evaluation of floating matrix tablet of Losartan for gastroretentive drug delivery. Asian J Pharm Technol. 2016; 6(2): 85-90.
5.    Jadhav RP, Kumbhar SB, Kengar MD. Design and In-vitro Evaluation expandable Gastro retentive tablets of Diltiazem Hydrochloride. Asian J Pharm Technol. 2020; 10(2): 53-59.
6.    Bahri-Najafi R, Mostafavi A, Tavakoli N, Taymouri S, Shahraki M-M. Preparation and in vitro-in vivo evaluation of acyclovir floating tablets. Res Pharm Sci. 2017; 12(2): 128-136. doi:10.4103/1735-5362.202451
7.    Hardikar S, Bhosale A. Formulation and evaluation of gastro retentive tablets of clarithromycin prepared by using novel polymer blend. Bull Fac Pharmacy, Cairo Univ. 2018; 56(2): 147-157. doi:https://doi.org/10.1016/j.bfopcu.2018.07.001
8.    Muzib YI, Malleswari K. Formulation and Evaluation of Floating Drug Delivery Systems of Famotidine Tablets. Res J Pharm Technol. 2010; 3(4): 1109-1113.
9.    Ilić I, Govedarica B, Šibanc R, Dreu R, Srčič S. Deformation properties of pharmaceutical excipients determined using an in-die and out-die method. Int J Pharm. 2013; 446(1): 6-15. doi:https://doi.org/10.1016/j.ijpharm.2013.02.001
10.    Mathew M, Madathil S, Govind A, Swamy VB. Formulation and Evaluation of Cinitapride Controlled Release Tablets. Asian J Pharm Res. 2016; 6(2): 87-94.
11.    Gulen B, Demircivi P. Synthesis and characterization of montmorillonite/ciprofloxacin/TiO2 porous structure for controlled drug release of ciprofloxacin tablet with oral administration. Appl Clay Sci. 2020; 197: 105768. doi:https://doi.org/10.1016/j.clay.2020.105768
12.    Abrahamsson B, Albery T, Eriksson A, Gustafsson I, Sjöberg M. Food effects on tablet disintegration. Eur J Pharm Sci. 2004; 22(2): 165-172. doi:https://doi.org/10.1016/j.ejps.2004.03.004
13.    Adkin D, Davis S, Sparrow RA, Huckle P, Wilding I. The effect of mannitol on the oral bioavailability of cimetidine. J Pharm Sci. 1995; 84 12: 1405-1409.
14.    Souza MPC de, Sábio RM, Ribeiro T de C, Santos AM dos, Meneguin AB, Chorilli M. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int J Biol Macromol. 2020; 159: 804-822. doi:https://doi.org/10.1016/j.ijbiomac.2020.05.104
15.    Sneha SW, Trupti VK, Darekar AB, Saudagar RB. A review: Floatable gastroretentive drug delivery system. Asian J Pharm Res. 2015; 5(1): 51-60.
16.    Zhang P, Shadambikar G, Almutairi M, Bandari S, Repka MA. Approaches for developing acyclovir gastro-retentive formulations using hot melt extrusion technology. J Drug Deliv Sci Technol. 2020:102002. doi:https://doi.org/10.1016/j.jddst.2020.102002
17.    Pawar V, Kansal S, Asthana S, Chourasia M. Industrial perspective of gastroretentive drug delivery systems: Physicochemical, biopharmaceutical, technological and regulatory consideration. Expert Opin Drug Deliv. 2012; 9: 551-565. doi:10.1517/17425247.2012.677431
18.    Elsamaligy S, Bodmeier R. Development of extended release multiple unit effervescent floating drug delivery systems for drugs with different solubilities. J Drug Deliv Sci Technol. 2015; 30: 467-477. doi:https://doi.org/10.1016/j.jddst.2015.05.008
19.    Prajapati VD, Jani GK, Khutliwala TA, Zala BS. Raft forming system—An upcoming approach of gastroretentive drug delivery system. J Control Release. 2013; 168(2): 151-165. doi:https://doi.org/10.1016/j.jconrel.2013.02.028
20.    Reddy YK, Kumar KS. Formulation and Evaluation of Effervescent Floating Tablets of Domperidone. Asian J Res Pharm Sci. 2020; 10(1): 1-5.
21.    El Nashar NF, Donia AA, Mady OY, El Maghraby GM. Formulation of clarithromycin floating microspheres for eradication of Helicobacter pylori. J Drug Deliv Sci Technol. 2017; 41: 213-221. doi:https://doi.org/10.1016/j.jddst.2017.07.016
22.    Pawar HA, Dhavale R. Development and evaluation of gastroretentive floating tablets of an antidepressant drug by thermoplastic granulation technique. Beni-Suef Univ J Basic Appl Sci. 2014; 3(2): 122-132. doi:https://doi.org/10.1016/j.bjbas.2014.05.005
23.    Sousa e Silva JP, Splendor D, Gonçalves IMB, Costa P, Sousa Lobo JM. Note on the measurement of bulk density and tapped density of powders according to the European Pharmacopeia. AAPS Pharm Sci Tech. 2013; 14(3): 1098-1100. doi:10.1208/s12249-013-9994-5
24.    Shah RB, Tawakkul MA, Khan MA. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS Pharm Sci Tech. 2008; 9(1): 250-258. doi: 10.1208/s12249-008-9046-8
25.    Nama M, Gonugunta CSR, Reddy Veerareddy P. Formulation and evaluation of gastroretentive dosage forms of Clarithromycin. AAPS Pharm Sci Tech. 2008;9(1):231-237. doi: 10.1208/s12249-008-9038-8
26.    Isbera M, Aboud K, Haroun M. Quality control of Warfarin Sodium tablets marketed in Syria. Res J Pharm Technol. 2017; 10(7): 2119-2121.
27.    Patel N, Patel J, Modasiya M. Formulation and In Vitro Evaluation of Glipizide as Floating Drug Delivery System. Asian J Pharm Technol. 2012; 2(2): 67-73.
28.    El-Zahaby SA, Kassem AA, El-Kamel AH. Design and evaluation of gastroretentive levofloxacin floating mini-tablets-in-capsule system for eradication of Helicobacter pylori. Saudi Pharm J  SPJ  Off Publ Saudi Pharm Soc. 2014; 22(6): 570-579. doi:10.1016/j.jsps.2014.02.009
29.    Alfatama M, Lim LY, Wong TW. Alginate-C18 Conjugate Nanoparticles Loaded in Tripolyphosphate-Cross-Linked Chitosan-Oleic Acid Conjugate-Coated Calcium Alginate Beads as Oral Insulin Carrier. Mol Pharm. 2018; 15(8): 3369-3382. doi:10.1021/acs.molpharmaceut.8b00391
30.    Sally A, Kassem AA, El-Kamel AH. Design and evaluation of gastroretentive levofloxacin floating mini-tablets-in-capsule system. 2014.
31.    Mouzam MI, Dehghan MHG, Asif S, Sahuji T, Chudiwal P. Preparation of a novel floating ring capsule-type dosage form for stomach specific delivery. Saudi Pharm J. 2011; 19(2): 85-93. doi:https://doi.org/10.1016/j.jsps.2011.01.004
32.    Rinaki E, Valsami G, Macheras P. The power law can describe the ‘entire’ drug release curve from HPMC-based matrix tablets: a hypothesis. Int J Pharm. 2003; 255(1): 199-207. doi:https://doi.org/10.1016/S0378-5173(03)00079-6
33.    Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987; 5(1): 37-42. doi:https://doi.org/10.1016/0168-3659(87)90035-6
34.    Kumar R, Patil MB, Patil SR, Paschapur MS. Formulation and evaluation of effervescent floating tablet of famotidine. Int J Pharm Tech Res. 2009; 1(3): 754-763.
35.    Nokhodchi A, Raja S, Patel P, Asare-Addo K. The role of oral controlled release matrix tablets in drug delivery systems. Bioimpacts. 2012;2(4):175-187. doi:10.5681/bi.2012.027
36.    Chavan R, Thipparaboina R, Kumar D, Shastri N. Evaluation of inhibitory potential of HPMC, PVP and HPC polymers on nucleation and crystal growth. RSC Adv. 2016;6. doi:10.1039/C6RA19746A
37.    Jaimini M, Rana AC, Tanwar YS. Formulation and evaluation of famotidine floating tablets. Curr Drug Deliv. 2007; 4(1): 51-55.
38.    Ahmed AB, Nath LK. Fabrication and in vitro evaluation of floating matrix tablet of nicorandil using factorial design. J Pharm Res. 2011; 4(6): 1950-1954.
39.    El-Zahaby SA, Kassem AA, El-Kamel AH. Formulation and in vitro evaluation of size expanding gastro-retentive systems of levofloxacin hemihydrate. Int J Pharm. 2014; 464(1-2): 10-18.
40.    Grdešič P, Vrečer F, Ilić I. Flow and compaction properties of hypromellose: new directly compressible versus the established grades. Drug Dev Ind Pharm. 2016;42(11): 1877-1886.
41.    Tadros MI. Controlled-release effervescent floating matrix tablets of ciprofloxacin hydrochloride: Development, optimization and in vitro–in vivo evaluation in healthy human volunteers. Eur J Pharm Biopharm. 2010; 74(2): 332-339.
42.    Bomma R, Naidu RAS, Yamsani MR, Veerabrahma K. Development and evaluation of gastroretentive norfloxacin floating tablets. Acta Pharm. 2009; 59(2): 211-221.
43.    Sungthongjeen S, Sriamornsak P, Puttipipatkhachorn S. Design and evaluation of floating multi-layer coated tablets based on gas formation. Eur J Pharm Biopharm. 2008; 69(1): 255-263.
44.    Li P, Dai Y-N, Zhang J-P, Wang A-Q, Wei Q. Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci IJBS. 2008; 4(3): 221.
45.    Singhvi G, Singh M. In-vitro drug release characterization models. Int J Pharm Stud Res. 2011; 2(1): 77-84.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available