Author(s): Diyantoro, Aliyah Siti Sundari, Rizka Oktarianti Ainun Jariah, Dwi Wahyu Indriati, Dwi Wahyu Indriani

Email(s): diyantoro_dvm@vokasi.unair.ac.id

DOI: 10.52711/0974-360X.2022.00742   

Address: Diyantoro1,2,3*, Aliyah Siti Sundari1,2, Rizka Oktarianti Ainun Jariah1,2, Dwi Wahyu Indriati1,2, Dwi Wahyu Indriani4
1Department of Health Science, Faculty of Vocational Studies, Universitas Airlangga, Indonesia.
2Antimicrobial Resource Alternative Studies for Emerging and Re-Emerging Infectious Disease, Universitas Airlangga, Indonesia.
3Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Indonesia.
4National Research and Innovation Agency, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 10,     Year - 2022


ABSTRACT:
Antimicrobial activity of black soldier fly larvae extract against gram-positive and gram-negative pathogenic bacteria has been discovered. Water-soluble extracts have the most potential and effectiveness as antimicrobials, with MIC values ranging from 12.5 to 25 mg/mL for both gram-positive and gram-negative bacteria. BSF larvae also create peptides called defensins and cecropins, which have antibacterial properties. Defensins were the best and most effective peptides in inhibiting bacterial growth, inhibiting both gram-positive and gram-negative bacteria (MIC value = > 29.97 µM), while cecropins were more effective on gram-negative bacteria (MIC value= 0.52 – 2.07 µM) than gram-positive bacteria (MIC value not detected).


Cite this article:
Diyantoro, Aliyah Siti Sundari, Rizka Oktarianti Ainun Jariah, Dwi Wahyu Indriati, Dwi Wahyu Indriani. A Potential Insect Antimicrobial of Black Soldier Fly Larvae (Hermetia illucens) against Pathogenic Bacteria. Research Journal of Pharmacy and Technology2022; 15(10):4425-3. doi: 10.52711/0974-360X.2022.00742

Cite(Electronic):
Diyantoro, Aliyah Siti Sundari, Rizka Oktarianti Ainun Jariah, Dwi Wahyu Indriati, Dwi Wahyu Indriani. A Potential Insect Antimicrobial of Black Soldier Fly Larvae (Hermetia illucens) against Pathogenic Bacteria. Research Journal of Pharmacy and Technology2022; 15(10):4425-3. doi: 10.52711/0974-360X.2022.00742   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-10-15


REFERENCES:
1.    Sreeja MK. Gowrishankar NL. Adisha S. Divya KC. Antibiotic Resistance-Reasons and the Most Common Resistant Pathogens – A Review. Research Journal of Pharmacy and Technology 2017; 10(6): 1886-1890. doi: 10.5958/0974-360X.2017.00331.6
2.    Shivani MD. Vaishali RU. Antibiotic Overuse and Resistance: An Awareness Study. Research Journal of Pharmacy and Technology 2019; 12(6): 2794-2798. doi: 10.5958/0974-360X.2019.00470.0
3.    Aishwarya JR. History of Antibiotics and Evolution of Resistance. Research Journal of Pharmacy and Technology 2015; 8(12): 1719-1724. doi: 10.5958/0974-360X.2015.00309.1
4.    Maria JD. Vijey AM. An Overview on Antibiotic use and resistance. Research Journal of Pharmacy and Technology 2017; 10(8): 2793-2796. doi: 10.5958/0974-360X.2017.00494.2
5.    Sharma S. Upadhayay UM. Mistry S. Antimicrobial Activity of Extracts against MRSA. Research Journal of Pharmacy and Technology 2016; 9(12):2283-2286. doi: 10.5958/0974-360X.2016.00460.1
6.    Nanda A. Dhamodharan S. Nayak BK. Antibiotic Resistance Pattern Exhibited by ESBL (Extended Spectrum β-Lactamases) in Multidrug Resistant Strains, Escherichia coli. Research Journal of Pharmacy and Technology 2017; 10(11): 3705-3708. doi: 10.5958/0974-360X.2017.00672.2
7.    Sandip Z. Shweta AP. Sushmita SR. Rise of Antibiotic Resistance in Tuberculosis. Research Journal of Pharmacy and Technology 2018; 11(7): 3201-3204. doi: 10.5958/0974-360X.2018.00588.7
8.    Hindi NKK. Abdul-Husin IF. Al-Mahdi ZKA. Ewadh RMJ. Hossain AO. Kadhim MJ. Alnasraui AHF. Al-Yaseri AA. Effectiveness of Aqueous extract of Green, Black and Red Tea Leaves against some types of Gram positive and negative bacteria. Research Journal of Pharmacy and Technology 2017; 10(6): 1957-1962. doi: 10.5958/0974-360X.2017.00343.2
9.    Elayaraja A. Rao GD. Anti-Bacterial Activity of Various Crude Extracts of Bryonia seabra. Research Journal of Pharmacy and Technology. 2008; 1(3): 283-284.
10.    Bargah RK. Kushwaha A. Tirkey A. Hariwanshi B. In Vitro Antioxidant and Antibacterial Screening of flowers Extract from Cassia auriculata Linn. Research Journal of Pharmacy and Technology 2020; 13(6):2624-2628. doi: 10.5958/0974-360X.2020.00466.7
11.    El-Sayed MA. Kamel MM. El-Raei MA. Osman SM. Gamil L. Abbas HA. Study of Antibacterial Activity of Some Plant Extracts Against Enterohemorrhagic Escherichia coli O157:H7. Research Journal of Pharmacy and Technology 2013; 6(8): 916-919.
12.    Żyłowska M. Wyszyńska A. Jagusztyn-Krynicka EK. Antimicrobial peptides – defensins (in Polish). Post. Mikrobiol. 2011; 50: 223–234.
13.    Yi HY. Chowdhury M. Huang YD. Yu XQ. Insect antimicrobial peptides and their applications. Applied Microbiology and Biotechnology 2014; 98(13): 5807–5822. doi: 10.1007/s00253-014-5792-6
14.    Choi WH. Yun JH. Chu JP. Chu KB. Antibacterial effect of extracts of Hermetia illucens (Diptera: Stratiomyidae) larvae against Gram-negative bacteria. Entomological Research 2012; 42(5): 219–226. doi: 10.1111/j.1748-5967.2012.00465.x
15.    Kim W. Bae S. Park K. Lee S. Choi Y. Han S. Koh Y. Biochemical characterization of digestive enzymes in the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Journal of Asia-Pacific Research 2011; 14(1): 11–14. doi: 10.1016/j.aspen.2010.11.003
16.    Diener S. Solano NMS. Gutierrez FR. Zurbrugg C. Tockner K. Biological Treatment of Municipal Organic Waste using Black Soldier Fly Larvae. Waste and Biomass Valorization 2011; 2(4): 357–363. doi: 10.1007/s12649-011-9079-1
17.    Park SI. Chang BS. Yoe SM. Detection of antimicrobial substances from larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Entomological Research 2014; 44(2): 58–64. doi: 10.1111/1748-5967.12050
18.    Müller A. Wolf D. Gutzeit HO. The black soldier fly, Hermetia illucens – a promising source for sustainable production of proteins, lipids and bioactive substances. Zeitschrift für Naturforschung 2017; 72(9–10): 351–363. doi: 10.1515/znc-2017-0030
19.    Liu Q. Tomberlin JK. Brday JA. Sanford MR. Yu Z. Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environmental Entomology 2008; 37(6): 1525–1530. doi: 10.1603/0046-225X-37.6.1525
20.    Hem S. Final Report: Maggot – Bioconversion Research Program in Indonesia, Concept of New Food Resources Result and Applications 2005-2011. Perancis: Institut de Recherche pour le Développement. 2011.
21.    Tomberlin JK. Adler PH. Myers HM. Development of the black soldier fly (Diptera: Stratiomyidae) in relation to temperature. Environmental Entomology. 2009; 38(3): 930-4. doi: 10.1603/022.038.0347
22.    Byrd JH. Castner JL. Insects of Forensic Importance. In: Byrd JH, Castner JL, editors. Forensic Entomology: The Utility of Arthropods in Legal Investigations (Second Edition). Boca Raton: CRC Press. 2010; 2nd ed: pp. 39-122.
23.    Triplehorn CA. Johnson NF. Borror and deLong’s Introduction to the Study of Insects (Seventh Edition). Belmont: Thomson Brooks/Cole. 2005.
24.    Tomberlin JK. Sheppard DC. Joice JA. Selected life-history traits of black soldier flies (Diptera: Stratiomyidae) reared on three artificial diets. Annals of the Entomological Society of America 2002; 95(3):379-86. doi: 10.1603/0013-8746(2002)095[0379:SLHTOB]2.0.CO;2
25.    Sheppard DC. Tomberlin JK. Joyce JA. Kiser BC. Somner SM. Rearing methods for the black soldier fly (Diptera: Stratiomyidae). Journal of Medical Entomology 2002; 39(4):695-8. doi: 10.1603/0022-2585-39.4.695
26.    Newton GL. Sheppard DC. Watson DW. Burtle GJ. Dove CR. Tomberlin JK. Thelen EE. The black soldier fly, Hermetia Illucens, as a manure management / resource recovery tool. Symppsium on the State of the Science of Animal Manure and Waste Management 2005; 5-7
27.    DuPonte MW. Larish LB. Soldier fly: Livestock Management Insect Pests, LM-10.7. Cooperative Exension Service, College of Tropical Agriculture and Human Resources. University of Hawaii, Manoa. 2003.
28.    Rozkosný R. A biosystematic study of the European Stratiomyidae (Diptera). In: Spencer, K.A. (Ed.), Clitellariinae, Hermetiinae, Pachygasterinae and Bibliography. Series Entomologica 1983; 2:172-176.
29.    Leclercq M. A propos de Hermetia illucens (Linnaeus, 1758) (“soldier fly”) (Diptera: Stratiomyidae: Hermetiinae). Bulletin et Annales de la Societe Belge d’entemologie 1997; 133:275–282.
30.    Marshall SA. Woodley NE. Hauser M. The historical spread of the Black Soldier Fly, Hermetia illucens (L.) (Diptera, Stratiomyidae, Hermetiinae), and its establishment in Canada. Journal of the Entomologcal Society of Ontario 2015; 146:51–54.
31.    Booth DC. Sheppard C. Oviposition of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae): eggs, masses, timing, and site characteristics. Environmental Entomology 1984; 13(2): 421-423. doi: 10.1093/ee/13.2.421
32.    Hogsette J. New diets for production of house-flies and stable flies (Diptera, Muscidae) in the Laboratory. Journal of Economic Entomology 1992; 85: 2291-2294. https://digitalcommons.unl.edu/usdaarsfacpub/1005
33.    Beskin KV. Holcomb CD. Cammack JA. Crippen TL. Knap AH. Sweet ST. Tomberlin JK. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions. Waste Management 2018; 74: 213-220. doi: 10.1016/j.wasman.2018.01.019.
34.    Park SI. Kim JW. Yoe SM. Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Developmental and Comparative Immunology 2015; 52: 98–106. doi: 10.1016/j.dci.2015.04.018
35.    Robertson M. Postlethwait JH. The humoral antibacterial response of Drosophila adults. Developmental and Comparative Immunology 1986; 10(2): 167–179. doi: 10.1016/0145-305x(86)90001-7
36.    Chu K. Jeon G. Quan F. Hexanedioic acid from Hermetia illucens larvae (Diptera: Stratiomyidae) protects mice against Klebsiella pneumoniae infection. Entomological Research 2014; 44(1): 1–8. doi: 10.1111/1748-5967.12043
37.    Choi WH, Choi H, Goo TW, Quan F. Novel antibacterial peptides induced by probiotics in Hermetia illucens (Diptera: Stratiomyidae) larvae. Entomological Research 2018; 48(4): 237–247. doi: 10.1111/1748-5967.12259
38.    Liu X. Chen X. Wang H. Yang Q. ur Rehman K. Li W. Cai M. Li Q. Mazza L. Zhang J. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE. 2017; 12: e0182601. doi: 10.1371/journal.pone.0182601
39.    Barragan-Fonseca KB. Dicke M. van Loon JJA. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed – a review. Journal of Insects as Food and Feed 2017; 3(2): 105–120. doi: 10.3920/JIFF2016.0055
40.    Newton GL. Booram CV. Barker RW. Hale OM.  Dried Hermetia illucens larvae meal as a supplement for swine. Journal of Animal Science 1977; 44(3): 395-400. doi: 10.2527/jas1977.443395x
41.    Raiti P. Endocrinology. In Divers SJ and Stahl SJ (eds.): Mader's Reptile and Amphibian Medicine and Surgery. Elsevier, St. Louis, MO. 2019; 835-848.
42.    Boyer TH. Scott PW. Nutritional Secondary Hyperparathyroidism. In Divers SJ and Stahl SJ (eds.): Mader's Reptile and Amphibian Medicine and Surgery. Elsevier, St. Louis, MO. 2019; 1326-1327.
43.    Spranghers T. Ottoboni M. Klootwijk C. Ovyn A. Debroosere S. De Meulenaer B. De Smet S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. Journal of the Science of Food and Agriculture 2017; 97(8):2594-2600. doi: 10.1002/jsfa.8081
44.    Liu X. Chen X. Wang H. Yang QQ. Rehman KU. Li W. Cai MM. Li Q. Mazza L. Zhang JB. Yu ZN. Zheng LY. Dynamic changes of nutrientcomposition throughout the entire life cycle of black soldier fly. PLoS ONE. 2017; 12: 21. doi: 10.1371/journal.pone.0182601
45.    Ramos-Bueno RP. González-Fernández MJ. Sánchez-Muros-Lozano MJ. García-Barroso F. Guil-Guerrero JL. Fatty acid profiles and cholesterol contentof seven insect species assessed by several extraction systems. European Food Research and Technology 2016; 242: 1471–1477. doi: 10.1007/s00217-016-2647-7
46.    Tomberlin JK. Sheppard DC. Factors influencing mating and oviposition of black soldier flies (Diptera: Stratiomyidae) in a colony. Journal of Entomological Science 2002; 37: 345–352. doi: 10.18474/0749-8004-37.4.345
47.    Ushakova NA. Brodskii ES. Kovalenko AA. Bastrakov AI. Kozlova AA. Pavlov DS. Characteristics of lipid fractions of larvae of the black soldier flyHermetia illucens. Doklady Biochemistry and Biophysics 2016; 468(1): 209–212. doi: 10.1134/S1607672916030145
48.    Janssen RH. Vincken JP. van den Broek LAM. Fogliano V. Lakemond CMM. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor,Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry 2017; 65(11); 2275–2278. doi: 10.1021/acs.jafc.7b00471
49.    Muller A. Wolf D. Gutzeit HO. The black soldier fly, Hermetia illucens – a promising source for sustainable production of proteins, lipids and bioactive substances. Zeitschrift für Naturforschung - Section C Journal of Biosciences 2017; 72(9-10): 351–363. doi: 10.1515/znc-2017-0030.
50.    Surendra KC. Olivier R. Tomberlin JK. Jha R. Khanal SK. Bioconversion oforganic wastes into biodiesel and animal feed via insect farming. Renewable Energy 2016; 98:197–202. doi: 10.1016/j.renene.2016.03.022
51.    Hall FG. Jones OG. O'Haire ME. Liceaga AM. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. Food Chemistry 2017; 224: 414-422. doi: 10.1016/j.foodchem.2016.11.138
52.    Finke MD. Complete nutrient content of four species of feeder insects. Zoo Biology 2013; 32(1):27-36. doi: 10.1002/zoo.21012
53.    Rammo RNN. Bactericidal and Anti-biofilm Formation of Aqueous Plant Extracts against Pathogenic Bacteria. Asian Journal of Pharmaceutical Research 2017; 7(1): 25-29. doi: 10.5958/2231-5691.2017.00005.3
54.    Meylaers K. Cerstiaens A. Vierstraete E. Baggerman G. Michiels CW. De Loof A. Schoofs L. Antimicrobial compounds of low molecular mass are constitutively present in insects: characterisation of β-alanyl-tyrosine. Current Pharmaceutical Design 2003;9(2):159-74. doi: 10.2174/1381612033392279.
55.    Choi WH. Jiang MH. Evaluation of antibacterial activity of hexanedioic acid isolated from Hermetia illucens larvae. Journal of Applied Biomedicine 2014; 12(3): 179-189. doi: 10.1016/j.jab.2014.01.003
56.    Harlystiarini. Mutia R. Wibawan IWT. Astuti DA. In vitro antibacterial activity of black soldier fly (Hermetia illucens) larva extracts against Gram-negative bacteria. Buletin Peternakan 2019; 43(2): 125-129. doi: 10.21059/buletinpeternak.v43i2.42833
57.    Auza FA. Purwanti S. Syamsu JA. Natsir A. Antibacterial activities of black soldier flies (Hermetia illucens. L) extract towards the growth of Salmonella typhimurium, E. coli, and Pseudomonas aeruginosa. IOP Conference. Series: Earth and Environmental Science 2020; 492: 012024. doi:10.1088/1755-1315/492/1/012024
58.    Hu H. Wang C. Guo X. Li W. Wang Y. He Q. Broad activity against porcine bacterial pathogens displayed by two insect antimicrobial peptides moricin and cecropin B. Molecules and Cells 2013; 35(2): 106–114. doi: 10.1007/s10059-013-2132-0
59.    Jozefak A. Engberg RM. Insect proteins as a potential source of antimicrobial peptides in livestock production: A review. Journal of Animal and Feed Sciences 2017; 26(2): 87–99. doi: 10.22358/jafs/69998/2017
60.    Bechinger B. Gorr SU. Antimicrobial peptides: Mechanisms of action and resistance. Journal of Dental Research 2017; 96(3): 254–260. doi: 10.1177/0022034516679973
61.    Oñate-Garzón J. Manrique-Moreno M. Trier S. Leidy C. Torres R. Patino E. Antimicrobial activity and interactions of cationic peptides derived from Galleria mellonella cecropin D-like peptide with model membranes. Journal of Antibiotics 2017; 70(3): 238–245. doi: 10.1038/ja.2016.134
62.    Yeaman MR. Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacological Review 2003; 55(1): 27–55. doi: 10.1124/pr.55.1.2.
63.    Hirsch R. Wiesner J. Bauer A. Marker A. Vogel H. Hammann PE. Vilcinskas A. Antimicrobial peptides from rat-tailed maggots of the drone fy eristalis tenax show potent activity against multidrug-resistant gram-negative bacteria. Microorganisms 2020; 8(5): 626. doi: 10.3390/microorganisms8050626.
64.    Bulet P. Hetru C. Dimarcq JL. Hoffman D. Antimicrobial peptides in insects: Structure and function. Developmental and Comparative Immunology 1999; 23(4-5): 329–344. doi: 10.1016/s0145-305x(99)00015-4.
65.    Hofmann JA. Reichhart JM. Drosophila innate immunity: An evolutionary perspective. Nature Immunology2002; 3(2): 121–126. doi: 10.1038/ni0202-121.
66.    Yi HY. Chowdhury M. Huang YD. Yu XQ. Insect antimicrobial peptides and their applications. Applied Microbiology and Biotechnology 2014; 98(13): 5807–22. doi: 10.1007/s00253-014-5792-6.
67.    Cociancich S. Ghazi A. Hetru C. Hoffmann JA. Letellier L. Insect defensin, an inducible antibacterial peptide, forms voltagedependent channels in Micrococcus luteus. Journal of Biological Chemistry 1993; 268(26): 19239–45. PMID: 7690029
68.    Malanovic N. Lohner K. Antimicrobial peptides targeting Gram-positive bacteria. Pharmaceuticals (Basel) 2016; 9(3): 59. doi: 10.3390/ph9030059
69.    Li ZQ. Merrifield RB. Boman IA. Boman HG. Effects on electrophoretic mobility and antibacterial spectrum of removal of two residues from synthetic sarcotoxin IA and addition of the same residues to cecropin B. FEBS Letters 1988; 231(2): 299–302. doi: 10.1016/0014-5793(88)80837-8.
70.    Nakajima Y. Qu XM. Natori S. Interaction between liposomes and sarcotoxin IA, a potent antibacterial protein of Sarcophaga peregrina (flesh fly). Journal of Biological Chemistry 1987; 262(4): 1665–9. PMID: 3543008
71.    Landon C. Meudal H. Boulanger N. Bulet P. Vovelle F. Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation. Biopolymers 2006; 81(2): 92–103. doi: 10.1002/bip.20370.
72.    Li Z. Mao R. Teng D. Hao Y. Chen H. Wang X. Wang X. Yang N. Wang J. Antibacterial and immunomodulatory activities of insect defensins-DLP2 and DLP4 against multidrug-resistant Staphylococcus aureus. Scientific Reports 2017; 7: 12124. doi:10.1038/s41598-017-10839-4.
73.    Park SI. Yoe SM. Defensin-like peptide3 from black solder fly: Identification, characterization, and key amino acids for anti-Gram-negative bacteria. Entomological Research 2017; 47(1): 41–47. doi: 10.1111/1748-5967.12214
74.    Li B. Yang N. Wang X. Hao Y. Mao R. Li Z. Wang Z. Teng D. Wang J. An Enhanced Variant Designed From DLP4 Cationic Peptide Against Staphylococcus aureus CVCC 546. Frontier in Microbiology 2020; 11: 1057. doi: 10.3389/fmicb.2020.01057
75.    Park SI. Yoe SM. A novel cecropin-like peptide from black soldier fly, Hermetia illucens: Isolation, structural and functional characterization. Entomological Research 2017(2); 47: 115–124. doi: 10.1111/1748-5967.12226
76.    Elhag O. Zhou D. Song Q. Soomro AA. Ci M. Zheng L. Yu Z. Zhang J. Screening, Expression, Purification and Functional Characterization of Novel Antimicrobial Peptide Genes from Hermetia illucens (L.). Plos One 2017. doi:10.1371/journal.pone.0169582.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available