Author(s): Vidyadevi T. Bhoyar, Veena S. Belgamwar, Sagar S. Trivedi

Email(s): vidyadevi.bhoyar@yahoo.com

DOI: 10.52711/0974-360X.2022.00899   

Address: Vidyadevi T. Bhoyar*, Veena S. Belgamwar, Sagar S. Trivedi
University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Amravati road, Nagpur-440 033 (India).
*Corresponding Author

Published In:   Volume - 15,      Issue - 11,     Year - 2022


ABSTRACT:
Starch is used as a key polymer in pharmaceutical industries since long back for various purposes such as binder, disintegrating agent, bulking agent, film former and many more. But as per the purpose of dosage forms it’s used get changed. Currently scientists are more focused on controlled and sustained release dosage forms. Since, native starch does not meet up the demand of controlled or sustained release, so there is need of modifying the polymer as per dosage form requirement. Modification of starch can be done by physical, chemical, enzymatic, and genetic method. Among all, the current article is focusing on chemical modification of starch, especially the acetylation. Acetylation of starch can be done using different acetylating agent such as acetic anhydride (AA), and glacial acetic acid etc. and sodium hydroxide (NaOH), pyridine and sulphuric acid etc as a catalyst. The native structure of starch can be less efficient, since its functional properties are less stable to process condition such as high temperature, shear stress and exposure to acidic media, which decreases its use in industrial application. Acetylated starches facilitate higher stability and resistance to retrogradation or crystallization, enhanced granular size, swelling power, and water absorption capacity, which provides good flow and compression properties. It reduces the pasting temperature and solubility. It makes the acetylated starch as a good candidate for customizing the overall performance of native starch, which may be used as the controlled release or sustained release polymer in pharmaceutical dosage form.


Cite this article:
Vidyadevi T. Bhoyar, Veena S. Belgamwar, Sagar S. Trivedi. Method of Starch Acetylation and Use of Acetylated Starch as Polymer in Pharmaceutical Formulations. Research Journal of Pharmacy and Technology. 2022; 15(11):5337-3. doi: 10.52711/0974-360X.2022.00899

Cite(Electronic):
Vidyadevi T. Bhoyar, Veena S. Belgamwar, Sagar S. Trivedi. Method of Starch Acetylation and Use of Acetylated Starch as Polymer in Pharmaceutical Formulations. Research Journal of Pharmacy and Technology. 2022; 15(11):5337-3. doi: 10.52711/0974-360X.2022.00899   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-11-84


REFERENCES:
1.     Gadge G. An Overview: Natural Polymers and their Applications. Research Journal of Pharmaceutical Dosage Forms and Technology. 2020; 12(2):131–6. 10.5958/0975-4377.2020.00023.3. Available from: www.anvpublication.org. [cited 2021 Aug 28]
2.     Singh H. Sodhi NS. Singh N. Structure and functional properties of acetylated Sorghum starch. International Journal of Food Properties. 2012; 15(2):312–25. https://doi.org/10.1080/10942912.2010.483633
3.     Cornejo-Ramírez YI. Martínez-Cruz O. Del Toro-Sánchez CL. Wong-Corral FJ. Borboa-Flores J. Cinco-Moroyoqui FJ et al The structural characteristics of starches and their functional properties. CYTA - Journal of Food. 2018; 16(1):1003–17. https://doi.org/10.1080/19476337.2018.1518343
4.     Chang Y. Lv Y. Structure, functionality, and digestibility of acetylated hulless barley starch. International Journal of Food Properties. 2017; 20(8):1818–1828. https://doi.org/10.1080/10942912.2016.1220013
5.     Singh J. Kaur L. McCarthy OJ. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-A review. Food Hydrocolloids. 2007; 21:1–22. https://doi.org/10.1016/j.foodhyd.2006.02.006
6.     Tester RF. Karkalas J. Qi X. Starch - Composition, fine structure and architecture. Journal of Cereal Science. Academic Press. 2004; 39:151–65. DOI:10.1016/j.jcs.2003.12.001
7.     Thakur B. Pandit V. Singh Ashawat M. Kumar P. Natural and Synthetic Polymers for Colon Targeted Drug Delivery. Asian J Pharm Tech. 2016; 6(1):35-44. DOI:10.5958/2231-5713.2016.00006.4. Available from: www.asianpharmaonline.org. [cited 2021 Aug 31]
8.     Kothekar S. Shukla S. A Brief Study on Starch Based Bio-Plastics Produced From Staple Food Items. Res J Pharm Tech. 2018; 11(11):4878-4883. DOI: 10.5958/0974-360X.2018.00888.0. Available from: www.rjptonline.org. [cited 2021 Aug 31]
9.     Singh N. Tiwari A. Kesharwani R. Patel DK. Pharmaceutical Polymer in Drug Delivery: A Review. Research Journal of Pharmacy and Technology. 2016; 9(7):982-994. Doi:10.5958/0974-360X.2016.00188.8. Available from: www.rjptonline.org. [cited 2021 Aug 31]
10.     Gopi GA. Elumalai A. Jayasri P. Evaluation of Manihot Esculenta Tuber Starch as Tablet Binder. Research Journal of Pharmaceutical Dosage Forms and Technology. 2012; 4(3):192-194.
11.     Xu YX. Dzenis Y. Hanna MA. Water solubility, thermal characteristics and biodegradability of extruded starch acetate foams. Industrial Crops and Products. 2005; 21(3):361–368. Doi: 10.1016/j.indcrop.2004.05.004
12.     Chen Q. Yu H. Wang L. Ul Abdin Z. Chen Y. Wang J et al Recent progress in chemical modification of starch and its applications. RSC Advances. 2015; 5(83):67459–67474. DOI: 10.1039/c5ra10849g
13.     Fan Y. Picchioni F. Modification of starch: A review on the application of “green” solvents and controlled functionalization. Carbohydrate Polymers. 2020; 241:116350. DOI: 10.1016/j.carbpol.2020.116350
14.     Teja Krishna M. Sandhya Rani N. Teja Krishna M. Saikishore V. Design and Development of Sweet Potato Starch Blended Sodium Alginate Mucoadhesive Microcapsules of Glipizide. Research Journal of Pharmaceutical Dosage Forms and Technology. 2012; 4(2):119–123.
15.     Doblado-Maldonado AF. Gomand S V. Goderis B, Delcour JA. Methodologies for producing amylose: A review. Critical Reviews in Food Science and Nutrition. 2017; 57(2):407–417. DOI: 10.1080/10408398.2014.954030
16.     Cao C. Nian B. Li Y. Wu S. Liu Y. Multiple Hydrogen-Bonding Interactions Enhance the Solubility of Starch in Natural Deep Eutectic Solvents: Molecule and Macroscopic Scale Insights. Journal of Agricultural and Food Chemistry. 2019; 67(45):12366–12373. DOI: 10.1021/acs.jafc.9b04503
17.     Bhuniya SP. Rahman MS. Satyanand AJ. Gharia MM. Dave AM. Novel route to synthesis of allyl starch and biodegradable hydrogel by copolymerizing allyl-modified starch with methacrylic acid and acrylamide. Journal of Polymer Science, Part A: Polymer Chemistry. 2003; 41(11):1650–1658. DOI: 10.1002/pola.10711
18.     Reis A V. Guilherme MR. Moia TA. Mattoso LHC. Muniz EC. Tambourgi EB. Synthesis and characterization of a starch-modified hydrogel as potential carrier for drug delivery system. Journal of Polymer Science, Part A: Polymer Chemistry. 2008; 46(7):2567–2574. DOI: 10.1002/pola.22588
19.     Yakushev P. Bershtein V. Bukowska-Sluz I. Sobiesiak M. Gawdzik B. Methacrylated monosaccharides as the modifiers for carbochain polymers: Synthesis, mechanical/thermal properties and biodegradability of hybrids. In: AIP Conference Proceedings. American Institute of Physics Inc. 2016; 1736. DOI: 10.1063/1.4949747
20.     Chen Q. Yu H. Wang L. Abdin Z ul. Yang X. Wang J et al Synthesis and characterization of amylose grafted poly(acrylic acid) and its application in ammonia adsorption. Carbohydrate Polymer. 2016; 153:429–434. DOI: 10.1016/j.carbpol.2016.07.120
21.     Hampe R. Heinze T. Studies about the solvent-dependent substitution pattern of starch acetates. Macromolecular Materials and Engineering. 2014; 299(10):1188–96. DOI: 10.1002/mame.201400012
22.     Avval ME. Moghaddam PN. Fareghi AR. Modification of starch by graft copolymerization: A drug delivery system tested for cephalexin antibiotic. Starch/Staerke. 2013; 65(7–8):572–583. DOI: 10.1002/star.201200189
23.     Rahim A. Nugroho MAF. Hutomo GS. Kadir S. Laude S. Muhardi et al Physicochemical properties of phosphate butyrate arenga starches from dual modifications. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd; 2021. DOI: 10.1088/1755-1315/681/1/012043
24.     Adewale Adetunji O. Chemically Modified Starches as Excipients in Pharmaceutical Dosage Forms. In: Chemical Properties of Starch. IntechOpen. 2020:1-9. DOI: 10.5772/intechopen.88210. Available from: www.intechopen.com. [cited 2021 Jun 2]
25.     Shi YC. Seib PA. Lu SPW. Leaching of amylose from wheat and corn starch. In: Advances in Experimental Medicine and Biology. 1991; 302:667–686. DOI: 10.1007/978-1-4899-0664-9_37
26.     Huang X. Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release. 2001; 73:121–36. DOI: 10.1016/S0168-3659(01)00248-6
27.     Shirwaikar A. Shirwaikar A. Prabhu S. Kumar G. Herbal excipients in novel drug delivery systems. Indian Journal of Pharmaceutical Sciences. 2008; 70:415–422. DOI: 10.4103/0250-474X.44587
28.     Hong Y. Liu G. Gu Z. Recent advances of starch-based excipients used in extended-release tablets: A review. Drug Delivery. Taylor and Francis Ltd; 2016; 23:12–20. DOI: 10.3109/10717544.2014.913324
29.     Kuakpetoon D. Wang YJ. Characterization of different starches oxidized by hypochlorite. Starch/Staerke. 2001; 53(5):211–218. DOI: 10.1002/1521-379X(200105)53:5<211::AID-STAR211>3.0.CO; 2-M
30.     Lawal M V. Modified Starches as Direct Compression Excipients – Effect of Physical and Chemical Modifications on Tablet Properties: A Review. Starch/Staerke. 2019; 71(1–2):1–10. DOI: 10.1002/star.201800040
31.     Vieira AP. Ferreira P. Coelho JFJ. Gil MH. Photocrosslinkable starch-based polymers for ophthalmologic drug delivery. International Journal of Biological Macromolecules. 2008; 43(4):325–332. DOI: 10.1016/j.ijbiomac.2008.06.002
32.     Suwanprateeb J. Suvannapruk W. Thammarakcharoen F. Chokevivat W. Rukskul P. Preparation and characterization of PEG-PPG-PEG copolymer/pregelatinized starch blends for use as resorbable bone hemostatic wax. Journal of Materials Science: Materials in Medicine. 2013; 24(12):2881–2888. DOI: 10.1007/s10856-013-5027-x
33.     Ulery BD. Nair LS. Laurencin CT. Biomedical applications of biodegradable polymers. Journal of Polymer Science, Part B: Polymer Physics. Wiley Periodicals, Inc; 2011; 49:832–864. DOI: 10.1007/s10856-013-5027-x
34.     Mendoza JS. Effect of the acetylation process on native starches of yam (Dioscorea spp.). 2016; 69(5):7997–8006. DOI: 10.15446/rfna.v69n2.59144
35.     Syuhada Mohamad Yazid N. Abdullah N. Muhammad N. Comparison of chemical, functional and morphological characteristics of jackfruit (Artocarpus heterophyllus Lam.) (J33) seed starch and commercial native starches. In: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing; 2019. DOI: 10.1088/1755-1315/269/1/012031
36.     Wang X. Cui X. Zhao Y. Chen C. Nano-bio interactions: the implication of size-dependent biological effects of nanomaterials. Science China Life Sciences. Science in China Press; 2020; 63:1168–1182. DOI: 10.1088/1755-1315/269/1/012031
37.     Ashogbon AO. Akintayo ET. Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch/Staerke. 2014; 66:41–57. DOI: 10.1002/star.201300106
38.     Lu D. Xiao C. Sun F. Controlled grafting of poly(vinyl acetate) onto starch via RAFT polymerization. Journal of Applied Polymer Science. 2012; 124(4):3450–3455. DOI: 10.1002/app.35423
39.     Gopala TE. Murthy K. Akash V. Development of Metoprolol Tartrate Sustained Release Formulations by using Modified Starches. Asian Journal of Research in Pharmaceutical Sciences. 2018; 8(4):2231–5659. DOI: 10.5958/2231-5659.2018.00040.1. Available from: www.anvpublication.orgwww.ajpsonline.com. [cited 2021 Aug 28]
40.     Debnath S. Gayathri VG. Swetha D. Niranjan Babu M. Evaluation of Disintegration Efficacy of Starch Citrate in Tablet Formulations. Asian Journal of Pharmaceutical Research. 2020; 10(2):2231–5691. DOI: 10.5958/2231-5691.2020.00014.3. Available from: www.anvpublication.orgwww.asianjpr.com. [cited 2021 Aug 28]
41.     Baranauskiene R. Rutkaite R. Pečiulyte L. Kazernavičiūte R. Venskutonis PR. Preparation and characterization of single and dual propylene oxide and octenyl succinic anhydride modified starch carriers for the microencapsulation of essential oils. Food and Function. 2016; 7(8):3555–65. DOI: 10.1039/c6fo00775a. Available from: https://pubmed.ncbi.nlm.nih.gov/27465989/. [cited 2021 Jun 3]
42.     Nl P. Rao R. Formulation and Evaluation of Lacidipine Tablets Employing Lacidipine-Starch Phosphate Binary Systems. Research Journal of Pharmacy and Technology. 2010; 3(2):458-460. Available from: www.rjptonline.org. [cited 2021 Aug 30]
43.     Kemas CU. Guktur RE. Ochekpe NA. Ngwuluka NC. Elijah I. Modified starches from the tubers of Plectranthus esculentus. British Journal of Pharmacy. 2019; 4(2):1-11. https://doi.org/10.5920/bjpharm.684
44.     Calderón-Castro A. Jacobo-Valenzuela N. Félix-Salazar LA. Zazueta-Morales J de J. Martínez-Bustos F. Fitch-Vargas PR et al Optimization of corn starch acetylation and succinylation using the extrusion process. Journal of Food Science and Technology. 2019; 56(8):3940–3950. Available from: https://link.springer.com/article/10.1007/s13197-019-03863-x. [cited 2021 Jun 2]
45.     Rao VS. Rajini Vege S. Synthesis, Characterization and Evaluation of Starch Acetate as Rate Controlling Matrix for Controlled Release of Aceclofenac. Research Journal of Pharmacy and Technology. 2017; 10(1). DOI: 10.5958/0974-360X.2017.00028.2. Available from: www.rjptonline.org. [cited 2021 Aug 30]
46.     Raj V. Prabha G. Synthesis, characterization and in vitro drug release of cisplatin loaded Cassava starch acetate–PEG/gelatin nanocomposites. Journal of the Association of Arab Universities for Basic and Applied Sciences. 2016; 21:10–6. DOI: 10.1016/j.jaubas.2015.08.001
47.     Mahmoudi Najafi SH. Baghaie M. Ashori A. Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model. International Journal of Biological Macromolecules. 2016; 87:48–54. DOI: 10.1016/j.ijbiomac.2016.02.030
48.     Bartz J. Goebel JT. Giovanaz MA. Zavareze EDR. Schirmer MA. Dias ARG. Acetylation of barnyardgrass starch with acetic anhydride under iodine catalysis. Food Chemistry. 2015; 178:236–242. DOI: 10.1016/j.foodchem.2015.01.095
49.     Nutan MTH. Soliman MS. Taha EI. Khan MA. Optimization and characterization of controlled release multi-particulate beads coated with starch acetate. International Journal of Pharmaceutics. 2005; 294(1–2):89–101. Available from: https://pubmed.ncbi.nlm.nih.gov/15814233/. [cited 2021 Jun 3]
50.     Colussi R. Pinto VZ. El Halal SLM. Biduski B. Prietto L. Castilhos DD et al Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties. Food Chemistry. 2017; 221:1614–20. DOI: 10.1016/j.foodchem.2016.10.129
51.     El Halal SLM. Colussi R. Biduski B. Evangelho JA. Bruni GP. Antunes MD et al Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley. Journal of the Science of Food and Agriculture. 2017; 97(2):411–9. DOI: 10.1002/jsfa.7773
52.     Tuovinen L. Ruhanen E. Kinnarinen T. Rönkkö S. Pelkonen J. Urtti A et al Starch acetate microparticles for drug delivery into retinal pigment epithelium - In vitro study. Journal of Controlled Release. 2004; 98(3):407–13. DOI: 10.1016/j.jconrel.2004.05.016
53.     Tuovinen L. Peltonen S. Liikola M. Hotakainen M. Lahtela-Kakkonen M. Poso A et a. Drug release from starch-acetate microparticles and films with and without incorporated α-amylase. Biomaterials. 2004; 25(18):4355–62. DOI: 10.1016/j.biomaterials.2003.11.026. Available from: https://pubmed.ncbi.nlm.nih.gov/15046926/. [cited 2021 Apr 24]
54.     Rao PS. FAS Beri RM. Tamarind seed jellose : fermentative degradation. 1951:1-6. Available from http://repository.ias.ac.in/35588/1/35588.pdf. [cited 2021-06-03].
55.     Lycoat RS 780 Pregelatinized hydroxypropyl pea starch Low viscosity [Internet]. [cited 2022 Mar 11]. Available from: https://www.roquette.com/innovation-hub/pharma/product-profile-pages/lycoat-rs-780-hydroxypropyl-pea-starch


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available