Author(s): Preeti Sinha

Email(s): prtsnh9224@gmail.com

DOI: 10.52711/0974-360X.2022.00903   

Address: Preeti Sinha*
Research Associate, Ministry of Jal Shakti, National River Conservation Directorate, New Delhi- 110003.
*Corresponding Author

Published In:   Volume - 15,      Issue - 11,     Year - 2022


ABSTRACT:
Conventional treatment technologies are costly, time-consuming, and inefficient. Phytoremediation is a cost-effective emerging technology for treatment of wastewater using water plants. It is a waste utilization process with the help of specific water plants. Thus, selection of plants is the most important or significant aspect for phytoremediation success. The potential of aquatic plants can be enhanced by application of new and innovative approaches. These water plants help in removal of contaminants and heavy metals from polluted water. The prominent metal accumulator are water hyacinth, water lettuce and duckweed.


Cite this article:
Preeti Sinha. Phytoremediation Techniques. Research Journal of Pharmacy and Technology.2022; 15(11):5359-2. doi: 10.52711/0974-360X.2022.00903

Cite(Electronic):
Preeti Sinha. Phytoremediation Techniques. Research Journal of Pharmacy and Technology.2022; 15(11):5359-2. doi: 10.52711/0974-360X.2022.00903   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-11-88


REFERENCES:
1.    Divya Singh, Archana Tiwari. Phytoremediation of lead from wastewater using aquatic plants: Journal of Agricultural Technology. 2012; 8(1): 1-11.doi.org/10.7439/ijbr.v2i7.124
2.    Akpor, O.B. and Muchie, M. Remediation of heavy metals in drinking water and wastewater treatment systems: Process and applications. International Journal of Physical Sciences. (2010); 5(12): 1807-1817. doi.org/10.5897/IJPS.9000482
3.    Neharika Chandekar. A review on Phytoremediation, A sustainable solution for treatment of kitchen wastewater: International Journal of Science and Research. (2015); 6(2): 1850-1855.
4.    K. Sri Lakshmi, M.Anji Reddy. Phytoremediation – A promising technique in wastewater treatment. International Journal of Scientific Research and Management. (2017); 5(6): 5480-5489.doi.org/10.18535/ijsrm/v5i6.20
5.    Mrs. Mrunalini P. Jagtap. Review paper on Phytoremediation: A green Technology. International Journal of Advanced Research in Science and Engineering. (2018); 7(3): 964-970.
6.    Prerna Jain, Antra Andotra. Phytoremediation- A miracle technique for wastewater treatment. Research J. Pharm. And Technology. (2019); 12(4): 2009-2016.doi.org/10.5958/0974-360X.2019.00341.X
7.    Rumana Ahmad, Neelam Misra. Evaluation of Phytoremediation Potential of Catharanthus roseus with Respect to Chromium Contamination. American Journal of Plant Sciences. (2014); 5 (15): 2378-2388.doi.org/10.4236/ajps.2014.515251.
8.    A. Vasavi, R. Usha. Phytoremediation – An overview. Jr. of Industrial Pollution Control. (2010); 26(1): 83-88.
9.    Harsha Patil. Phytoremediation in sewage treatment. International Journal of Scientific & Engineering Research Volume. (2019); 10(5): 278- 284.
10.    A Sumiahadi. A review of Phytoremediation technology: heavy metals uptake by plants. (2018); 142: 012-023.doi.org/10.1088/1755-1315/142/1/012023
11.    Erakhrumen, A.A. Phytoremediation: An environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ. Res. Rev. (2017); 2: 151–156.
12.    Chandra, R.; Kumar, V.; Tripathi, S.; Sharma, P. Heavy metal phytoextraction potential of native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in-situ phytoremediation. Ecol. Eng. (2018); 111: 143–156.doi.org/10.1016/j.ecoleng.2017.12.007
13.    Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere (2013); 91: 869–881.doi.org/10.1016/j.chemosphere.2013.01.075
14.    Pulford, I. D. and C. Watson Phytoremediation of heavy metal-contaminated land by trees – A review. Environmental Int. (2003); 29: 529-240.doi.org/10.1016/S0160-4120(02)00152-6
15.    Cundy, A.B.; Bardos, R.; Church, A.; Puschenreiter, M.; Friesl-Hanl, W.; Müller, I.; Vangronsveld, J. Developing principles of sustainability and stakeholder engagement for “gentle” remediation approaches: The European context. J. Environ. Manag. (2013); 129: 283–291.doi.org/10.1016/j.jenvman.2013.07.032
16.    Najeeb, U.; Ahmad, W.; Zia, M.H.; Zaffar, M.; Zhou, W. Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arab. J. Chem. (2017); 10: 3310–3317
17.    Jadia, C.D.; Fulekar, M. Phytoremediation of heavy metals: Recent techniques. Afr. J. Biotechnol. (2009); 8: 921–928
18.    Mahdavian, K.; Ghaderian, S.M.; Torkzadeh-Mahani, M. Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead–zinc mining area, Iran. J. Soils Sediments (2017); 17: 1310–1320.doi.org/10.1007/s11368-015-1260-x
19.    Abhilash, P.; Jamil, S.; Singh, N. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol. Adv. (2009); 27: 474–488.doi.org/10.1016/j.biotechadv.2009.04.002
20.    Benavides, L.C.L.; Pinilla, L.A.C.; Serrezuela, R.R.; Serrezuela, W.F.R. Extraction in Laboratory of Heavy Metals Through Rhizofiltration using the Plant Zea Mays (maize). Int. J. Appl. Environ. Sci. (2018); 13: 9–26.
21.    Raskin, I.; Ensley, B.D. Phytoremediation of Toxic Metals; John Wiley and Sons: Hoboken, NJ, USA, 2000.
22.    Zhu, Y.; Zayed, A.; Qian, J.; De Souza, M.; Terry, N. Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J. Environ. Qual. (1999); 28: 339–344.doi.org/10.2134/jeq1999.00472425002800010042x
23.    Sreelal, G.; Jayanthi, R. Review on phytoremediation technology for removal of soil contaminant. Indian J. Sci. Res. (2017);14: 127–130.
24.    Karami, A.; Shamsuddin, Z.H. Phytoremediation of heavy metals with several efficiency enhancer methods. Afr. J. Biotechnol. (2010); 9: 3689–3698.
25.    Ghosh, M.; Singh, S. A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J. Energy Environ. (2005); 6: 18.doi.org/10.15666/aeer/0301_001018
26.    Pratas, J.; Paulo, C.; Favas, P.J.; Venkatachalam, P. Potential of aquatic plants for phytofiltration of uranium-contaminated waters in laboratory conditions. Ecol. Eng. (2014); 69: 170–176.doi.org/10.1016/j.ecoleng.2014.03.046
27.    Fritioff, Å.; Greger, M. Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater. Int. J. Phytoremediat. (2003); 5: 211–224.doi.org/10.1080/713779221
28.    Gorito, A.M.; Ribeiro, A.R.; Almeida, C.M.R.; Silva, A.M. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environ. Pollut. (2017); 227: 428–443.doi.org/10.1016/j.envpol.2017.04.060
29.    Mays, P.; Edwards, G. Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecol. Eng. (2001); 16: 487–500.doi.org/10.1016/S0925-8574(00)00112-9
30.    Stoltz, E.; Greger, M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ. Exp. Bot. (2002); 47: 271–280.doi.org/10.1016/S0098-8472(02)00002-3
31.    Maine, M.A.; Duarte, M.V.; Suñé, N.L. Cadmium uptake by floating macrophytes. Water Res. (2001); 35: 2629–2634.doi.org/ 10.1016/S0043-1354(00)00557-1
32.    Kumar, H.S.; Bose, A.; Raut, A.; Sahu, S.K.; Raju, M. Evaluation of Anthelmintic Activity of Pistia stratiotes Linn. J. Basic Clin. Pharm. (2010); 1: 103.
33.    Muthunarayanan, V.; Santhiya, M.; Swabna, V.; Geetha, A. Phytodegradation of textile dyes by water hyacinth (Eichhornia crassipes) from aqueous dye solutions. Int. J. Environ. Sci. (2011); 1: 1702
34.    Yadav, S.; Jadhav, A.; Chonde, S.; Raut, P. Performance Evaluation of Surface Flow Constructed Wetland System by Using Eichhornia crassipes for Wastewater Treatment in an Institutional Complex. Univers. J. Environ. Res. Technol. (2011); 1: 435–441.
35.    Quattrocchi, U. CRC World Dictionary of Plant Names: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology; CRC Press: Boca Raton, FL, USA, (2017); 728.doi.org/10.1201/9781315140599
36.    Dipu, S.; Kumar, A.A.; Thanga, V.S.G. Phytoremediation of dairy effluent by constructed wetland technology. Environment (2011); 31: 263–278.doi.org/10.1007/s10669-011-9331-z
37.    Lima, L.; Pelosi, B.; Silva, M.; Vieira, M. Lead and chromium biosorption by Pistia stratiotes biomass. Chem. Eng. Trans. (2013); 32: 1045–1050.doi.org/10.3303/CET1332175
38.    Les, D.H.; Crawford, D.J.; Landolt, E.; Gabel, J.D.; Kimball, R.T. Phylogeny and systematics of Lemnaceae, the duckweed family. Syst. Bot. (2002); 27: 221–240.doi.org/10.1043/0363-6445-27.2.221
39.    Radi´c, S.; Stipaniˇcev, D.; Cvjetko, P.; Mikeli´c, I.L.; Rajˇci´c, M.M.; Širac, S.; Pavlica, M. Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism. Ecotoxicology (2010); 19: 216.doi.org10.1007/s10646-009-0408-0
40.    Alaerts, G.; Mahbubar, R.; Kelderman, P. Performance analysis of a full-scale duckweed-covered sewage lagoon. Water Res. (1996); 30: 843–852.doi.org/10.1016/0043-1354(95)00234-0
41.    Shuvaeva, O.V.; Belchenko, L.A.; Romanova, T.E. Studies on cadmium accumulation by some selected floating macrophytes. Int. J. Phytoremediat. (2013); 15: 979–990.doi.org/10.1080/15226514.2012.751353
42.    Mahalakshmi, R.; Sivapragasam, C.; Vanitha, S. Comparison of BOD 5 Removal in Water Hyacinth and Duckweed by Genetic Programming Information and Communication Technology for Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2019; 401–408.doi.org/10.1007/978-981-13-1742-2_39
43.    Fazal, S.; Zhang, B.; Mehmood, Q. Biological treatment of combined industrial wastewater. Ecol. Eng. (2015); 84: 551–558.doi.org/10.1016/j.ecoleng.2015.09.014
44.    Eloy, G.-G.; Marta, R.; Gertjan, M.; Miquel, C.; Rosina, G. Quantitative risk assessment of norovirus and adenovirus for the use of reclaimed water to irrigate lettuce in Catalonia. Water Res. (2019); 153: 91–99.doi.org/10.1016/j.watres.2018.12.070
45.    Mishra, V.K.; Tripathi, B. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour. Technol. (2008); 99: 7091–7097.doi.org/10.1016/j.biortech.2008.01.002
46.    Iha, D.S.; Bianchini, I., Jr. Phytoremediation of Cd, Ni, Pb and Zn by Salvinia minima. Int. J. Phytoremediat. (2015); 17: 929–935.doi.org/10.1080/15226514.2014.1003793
47.    Dhir, B.; Sharmila, P.; Saradhi, P.P.; Sharma, S.; Kumar, R.; Mehta, D. Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicol. Environ. Saf. (2011); 74: 1678–1684.doi.org/10.1016/j.ecoenv.2011.05.009
48.    Kara, Y. Bioaccumulation of copper from contaminated wastewater by using Lemna minor (Aquatic green plant). Bullet. Environ. Contam. Toxicol. (2004); 72: 467–471.doi.org/10.1007/s00128-001-0269-4
49.    Zurayk, R.; Sukkariyah, B.; Baalbaki, R.; Ghanem, D.A. Chromium phytoaccumulation from solution by selected hydrophytes. Int. J. Phytoremediat. (2001); 3: 335–350.doi.org10.1080/15226510108500063
50.    Rahman, M.A.; Hasegawa, H. Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere. (2011); 83: 633–646.doi.org/10.1016/j.chemosphere.2011.02.045
51.    Obek, E.; Sasmaz, A. Bioaccumulation of aluminum by Lemna gibba L. from secondary treated municipal wastewater effluents. Bull. Environ. Contam. Toxicol. (2011); 86: 217–220.doi.org/10.1007/s00128-011-0197-z
52.    Singh, D.; Tiwari, A.; Gupta, R. Phytoremediation of lead from wastewater using aquatic plants. J. Agric. Technol. (2012); 8: 1–11.doi.org/10.7439/ijbr.v2i7.124
53.    Sivaci, E.R.; Sivaci, A.; Sökmen, M. Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere (2004); 56: 1043–1048.doi.org/10.1016/j.chemosphere.2004.05.032
54.    Brankovi´c, S.; Pavlovi´c-Muratspahi´c, D.; Topuzovi´c, M.; Gliši´c, R.; Milivojevi´c, J.; Đeki´c, V. Metals concentration and accumulation in several aquatic macrophytes. Biotechnol. Biotechnol. Equip. (2012); 26: 2731–2736.doi.org/10.5504/bbeq.2011.0086
55.    El-Khatib, A.; Hegazy, A.; Abo-El-Kassem, A.M. Bioaccumulation potential and physiological responses of aquatic macrophytes to Pb pollution. Int. J. Phytoremediat. (2014); 16: 29–45.doi.org/10.1080/15226514.2012.751355
56.    Peng, K.; Luo, C.; Lou, L.; Li, X.; Shen, Z. Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq and their potential use for contamination indicators and in wastewater treatment. Sci. Total Environ. (2008); 392: 22–29. doi.org/10.1016/j.scitotenv.2007.11.032
57.    Singh, N.; Pandey, G.; Rai, U.; Tripathi, R.; Singh, H.; Gupta, D. Metal accumulation and ecophysiological effects of distillery effluent on Potamogeton pectinatus L. Bull. Environ. Contam. Toxicol. (2005); 74: 857–863.doi.org/10.1007/s00128-005-0660-9
58.    Nurul Umairah Mohd Nizam. Efficiency of five selected aquatic plants in phytoremediation of aquaculture wastewater. Applied sciences. (2020); 10: 1-11.doi.org/10.3390/app10082712
59.    Jae Heung Lee. An overview of phytoremediation as a potentially promising technology for Environmental Pollution Control. Biotechnology and Bioprocess Engineering. (2013); 18: 431-439.doi.org/10.1007/s12257-013-0193-8
60.    Daniah Ali Hassoon Nash. Utilisation of an aquatic plant (scirpus grossus) for phytoremediation of real sago mill effluent. Environmental Technology & Innovation. (2020); 19: 101033. doi.org/10.1016/j.eti.2020.101033
61.    Pugazholi P, Babypriya A., Esai Kanaga Yadav K.R. Phytoremediation: Removal of Heavy Metals from Soil using Helianthus annuus. Research J. Engineering and Tech. (2013); 4(4): 242-245
62.    Hannah Elizabeth, S., Panneerselvam, A. Phytoremediation of TNT in Soil at Vellore District, Tamilnadu, India. Research J. Pharm. and Tech. (2014); 7(8): 902-905.doi.org/10.5958/0974-360X.2019.00341.X
63.    Anand Mohan, Rupinder Kaur, Madhuri Girdhar. Analysis of Ability of Chenopodium album for Remediation of Heavy Metal Degraded Soil. Research J. Pharm. and Tech. (2019); 12(10):4851-4856. Doi.org/10.5958/0974-360X.2019.00840.0


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available