Author(s): Preeti Sinha


DOI: 10.52711/0974-360X.2022.00903   

Address: Preeti Sinha*
Research Associate, Ministry of Jal Shakti, National River Conservation Directorate, New Delhi- 110003.
*Corresponding Author

Published In:   Volume - 15,      Issue - 11,     Year - 2022

Conventional treatment technologies are costly, time-consuming, and inefficient. Phytoremediation is a cost-effective emerging technology for treatment of wastewater using water plants. It is a waste utilization process with the help of specific water plants. Thus, selection of plants is the most important or significant aspect for phytoremediation success. The potential of aquatic plants can be enhanced by application of new and innovative approaches. These water plants help in removal of contaminants and heavy metals from polluted water. The prominent metal accumulator are water hyacinth, water lettuce and duckweed.

Cite this article:
Preeti Sinha. Phytoremediation Techniques. Research Journal of Pharmacy and Technology.2022; 15(11):5359-2. doi: 10.52711/0974-360X.2022.00903

Preeti Sinha. Phytoremediation Techniques. Research Journal of Pharmacy and Technology.2022; 15(11):5359-2. doi: 10.52711/0974-360X.2022.00903   Available on:

1.    Divya Singh, Archana Tiwari. Phytoremediation of lead from wastewater using aquatic plants: Journal of Agricultural Technology. 2012; 8(1):
2.    Akpor, O.B. and Muchie, M. Remediation of heavy metals in drinking water and wastewater treatment systems: Process and applications. International Journal of Physical Sciences. (2010); 5(12): 1807-1817.
3.    Neharika Chandekar. A review on Phytoremediation, A sustainable solution for treatment of kitchen wastewater: International Journal of Science and Research. (2015); 6(2): 1850-1855.
4.    K. Sri Lakshmi, M.Anji Reddy. Phytoremediation – A promising technique in wastewater treatment. International Journal of Scientific Research and Management. (2017); 5(6):
5.    Mrs. Mrunalini P. Jagtap. Review paper on Phytoremediation: A green Technology. International Journal of Advanced Research in Science and Engineering. (2018); 7(3): 964-970.
6.    Prerna Jain, Antra Andotra. Phytoremediation- A miracle technique for wastewater treatment. Research J. Pharm. And Technology. (2019); 12(4):
7.    Rumana Ahmad, Neelam Misra. Evaluation of Phytoremediation Potential of Catharanthus roseus with Respect to Chromium Contamination. American Journal of Plant Sciences. (2014); 5 (15):
8.    A. Vasavi, R. Usha. Phytoremediation – An overview. Jr. of Industrial Pollution Control. (2010); 26(1): 83-88.
9.    Harsha Patil. Phytoremediation in sewage treatment. International Journal of Scientific & Engineering Research Volume. (2019); 10(5): 278- 284.
10.    A Sumiahadi. A review of Phytoremediation technology: heavy metals uptake by plants. (2018); 142:
11.    Erakhrumen, A.A. Phytoremediation: An environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ. Res. Rev. (2017); 2: 151–156.
12.    Chandra, R.; Kumar, V.; Tripathi, S.; Sharma, P. Heavy metal phytoextraction potential of native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in-situ phytoremediation. Ecol. Eng. (2018); 111: 143–
13.    Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere (2013); 91: 869–
14.    Pulford, I. D. and C. Watson Phytoremediation of heavy metal-contaminated land by trees – A review. Environmental Int. (2003); 29:
15.    Cundy, A.B.; Bardos, R.; Church, A.; Puschenreiter, M.; Friesl-Hanl, W.; Müller, I.; Vangronsveld, J. Developing principles of sustainability and stakeholder engagement for “gentle” remediation approaches: The European context. J. Environ. Manag. (2013); 129: 283–
16.    Najeeb, U.; Ahmad, W.; Zia, M.H.; Zaffar, M.; Zhou, W. Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arab. J. Chem. (2017); 10: 3310–3317
17.    Jadia, C.D.; Fulekar, M. Phytoremediation of heavy metals: Recent techniques. Afr. J. Biotechnol. (2009); 8: 921–928
18.    Mahdavian, K.; Ghaderian, S.M.; Torkzadeh-Mahani, M. Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead–zinc mining area, Iran. J. Soils Sediments (2017); 17: 1310–
19.    Abhilash, P.; Jamil, S.; Singh, N. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol. Adv. (2009); 27: 474–
20.    Benavides, L.C.L.; Pinilla, L.A.C.; Serrezuela, R.R.; Serrezuela, W.F.R. Extraction in Laboratory of Heavy Metals Through Rhizofiltration using the Plant Zea Mays (maize). Int. J. Appl. Environ. Sci. (2018); 13: 9–26.
21.    Raskin, I.; Ensley, B.D. Phytoremediation of Toxic Metals; John Wiley and Sons: Hoboken, NJ, USA, 2000.
22.    Zhu, Y.; Zayed, A.; Qian, J.; De Souza, M.; Terry, N. Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J. Environ. Qual. (1999); 28: 339–
23.    Sreelal, G.; Jayanthi, R. Review on phytoremediation technology for removal of soil contaminant. Indian J. Sci. Res. (2017);14: 127–130.
24.    Karami, A.; Shamsuddin, Z.H. Phytoremediation of heavy metals with several efficiency enhancer methods. Afr. J. Biotechnol. (2010); 9: 3689–3698.
25.    Ghosh, M.; Singh, S. A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J. Energy Environ. (2005); 6:
26.    Pratas, J.; Paulo, C.; Favas, P.J.; Venkatachalam, P. Potential of aquatic plants for phytofiltration of uranium-contaminated waters in laboratory conditions. Ecol. Eng. (2014); 69: 170–
27.    Fritioff, Å.; Greger, M. Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater. Int. J. Phytoremediat. (2003); 5: 211–
28.    Gorito, A.M.; Ribeiro, A.R.; Almeida, C.M.R.; Silva, A.M. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environ. Pollut. (2017); 227: 428–
29.    Mays, P.; Edwards, G. Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecol. Eng. (2001); 16: 487–
30.    Stoltz, E.; Greger, M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ. Exp. Bot. (2002); 47: 271–
31.    Maine, M.A.; Duarte, M.V.; Suñé, N.L. Cadmium uptake by floating macrophytes. Water Res. (2001); 35: 2629– 10.1016/S0043-1354(00)00557-1
32.    Kumar, H.S.; Bose, A.; Raut, A.; Sahu, S.K.; Raju, M. Evaluation of Anthelmintic Activity of Pistia stratiotes Linn. J. Basic Clin. Pharm. (2010); 1: 103.
33.    Muthunarayanan, V.; Santhiya, M.; Swabna, V.; Geetha, A. Phytodegradation of textile dyes by water hyacinth (Eichhornia crassipes) from aqueous dye solutions. Int. J. Environ. Sci. (2011); 1: 1702
34.    Yadav, S.; Jadhav, A.; Chonde, S.; Raut, P. Performance Evaluation of Surface Flow Constructed Wetland System by Using Eichhornia crassipes for Wastewater Treatment in an Institutional Complex. Univers. J. Environ. Res. Technol. (2011); 1: 435–441.
35.    Quattrocchi, U. CRC World Dictionary of Plant Names: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology; CRC Press: Boca Raton, FL, USA, (2017);
36.    Dipu, S.; Kumar, A.A.; Thanga, V.S.G. Phytoremediation of dairy effluent by constructed wetland technology. Environment (2011); 31: 263–
37.    Lima, L.; Pelosi, B.; Silva, M.; Vieira, M. Lead and chromium biosorption by Pistia stratiotes biomass. Chem. Eng. Trans. (2013); 32: 1045–
38.    Les, D.H.; Crawford, D.J.; Landolt, E.; Gabel, J.D.; Kimball, R.T. Phylogeny and systematics of Lemnaceae, the duckweed family. Syst. Bot. (2002); 27: 221–
39.    Radi´c, S.; Stipaniˇcev, D.; Cvjetko, P.; Mikeli´c, I.L.; Rajˇci´c, M.M.; Širac, S.; Pavlica, M. Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism. Ecotoxicology (2010); 19: 216.doi.org10.1007/s10646-009-0408-0
40.    Alaerts, G.; Mahbubar, R.; Kelderman, P. Performance analysis of a full-scale duckweed-covered sewage lagoon. Water Res. (1996); 30: 843–
41.    Shuvaeva, O.V.; Belchenko, L.A.; Romanova, T.E. Studies on cadmium accumulation by some selected floating macrophytes. Int. J. Phytoremediat. (2013); 15: 979–
42.    Mahalakshmi, R.; Sivapragasam, C.; Vanitha, S. Comparison of BOD 5 Removal in Water Hyacinth and Duckweed by Genetic Programming Information and Communication Technology for Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2019; 401–
43.    Fazal, S.; Zhang, B.; Mehmood, Q. Biological treatment of combined industrial wastewater. Ecol. Eng. (2015); 84: 551–
44.    Eloy, G.-G.; Marta, R.; Gertjan, M.; Miquel, C.; Rosina, G. Quantitative risk assessment of norovirus and adenovirus for the use of reclaimed water to irrigate lettuce in Catalonia. Water Res. (2019); 153: 91–
45.    Mishra, V.K.; Tripathi, B. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour. Technol. (2008); 99: 7091–
46.    Iha, D.S.; Bianchini, I., Jr. Phytoremediation of Cd, Ni, Pb and Zn by Salvinia minima. Int. J. Phytoremediat. (2015); 17: 929–
47.    Dhir, B.; Sharmila, P.; Saradhi, P.P.; Sharma, S.; Kumar, R.; Mehta, D. Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicol. Environ. Saf. (2011); 74: 1678–
48.    Kara, Y. Bioaccumulation of copper from contaminated wastewater by using Lemna minor (Aquatic green plant). Bullet. Environ. Contam. Toxicol. (2004); 72: 467–
49.    Zurayk, R.; Sukkariyah, B.; Baalbaki, R.; Ghanem, D.A. Chromium phytoaccumulation from solution by selected hydrophytes. Int. J. Phytoremediat. (2001); 3: 335–350.doi.org10.1080/15226510108500063
50.    Rahman, M.A.; Hasegawa, H. Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere. (2011); 83: 633–
51.    Obek, E.; Sasmaz, A. Bioaccumulation of aluminum by Lemna gibba L. from secondary treated municipal wastewater effluents. Bull. Environ. Contam. Toxicol. (2011); 86: 217–
52.    Singh, D.; Tiwari, A.; Gupta, R. Phytoremediation of lead from wastewater using aquatic plants. J. Agric. Technol. (2012); 8: 1–
53.    Sivaci, E.R.; Sivaci, A.; Sökmen, M. Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere (2004); 56: 1043–
54.    Brankovi´c, S.; Pavlovi´c-Muratspahi´c, D.; Topuzovi´c, M.; Gliši´c, R.; Milivojevi´c, J.; Đeki´c, V. Metals concentration and accumulation in several aquatic macrophytes. Biotechnol. Biotechnol. Equip. (2012); 26: 2731–
55.    El-Khatib, A.; Hegazy, A.; Abo-El-Kassem, A.M. Bioaccumulation potential and physiological responses of aquatic macrophytes to Pb pollution. Int. J. Phytoremediat. (2014); 16: 29–
56.    Peng, K.; Luo, C.; Lou, L.; Li, X.; Shen, Z. Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq and their potential use for contamination indicators and in wastewater treatment. Sci. Total Environ. (2008); 392: 22–29.
57.    Singh, N.; Pandey, G.; Rai, U.; Tripathi, R.; Singh, H.; Gupta, D. Metal accumulation and ecophysiological effects of distillery effluent on Potamogeton pectinatus L. Bull. Environ. Contam. Toxicol. (2005); 74: 857–
58.    Nurul Umairah Mohd Nizam. Efficiency of five selected aquatic plants in phytoremediation of aquaculture wastewater. Applied sciences. (2020); 10:
59.    Jae Heung Lee. An overview of phytoremediation as a potentially promising technology for Environmental Pollution Control. Biotechnology and Bioprocess Engineering. (2013); 18:
60.    Daniah Ali Hassoon Nash. Utilisation of an aquatic plant (scirpus grossus) for phytoremediation of real sago mill effluent. Environmental Technology & Innovation. (2020); 19: 101033.
61.    Pugazholi P, Babypriya A., Esai Kanaga Yadav K.R. Phytoremediation: Removal of Heavy Metals from Soil using Helianthus annuus. Research J. Engineering and Tech. (2013); 4(4): 242-245
62.    Hannah Elizabeth, S., Panneerselvam, A. Phytoremediation of TNT in Soil at Vellore District, Tamilnadu, India. Research J. Pharm. and Tech. (2014); 7(8):
63.    Anand Mohan, Rupinder Kaur, Madhuri Girdhar. Analysis of Ability of Chenopodium album for Remediation of Heavy Metal Degraded Soil. Research J. Pharm. and Tech. (2019); 12(10):4851-4856.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available