Author(s):
Makarova E.I., Bokov D.O., Sergunova E.V., Chevidaev V.V., Kakhramanova S.D., Bessonov V.V., Friesen N.V., Luferov A.N.
Email(s):
fmmsu@mail.ru
DOI:
10.52711/0974-360X.2022.00155
Address:
Makarova E.I.1, Bokov D.O.1,2*, Sergunova E.V.1, Chevidaev V.V. 1, Kakhramanova S.D. 1,3, Bessonov V.V. 2, Friesen N.V. 1,4, Luferov A.N. 1
Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991, Russian Federation.
2Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation.
3Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medicinal Products”, 8/2 Petrovsky Boulevard, Moscow, 127051, Russian Federation.
4Botanical Garden of the University of Osnabrueck, Albrechtstr. 29, Osnabrueck, 490776 Germany.
*Corresponding Author
Published In:
Volume - 15,
Issue - 2,
Year - 2022
ABSTRACT:
Phytochemical composition data of various parts of celery (Apium graveolens L.) and pharmacological activity thereof are analyzed herein. Flavonoids, organic acids, hydroxycinnamic acids, ether oil terpenoids, tannins, vitamins and microelements are A. graveolens biologically active substances (BAS). Rich composition of BAS causes multiple both biological and pharmacological effects of herbal raw materials extracts mainly due to antioxidant activity. Furthermore, the extracts have neuroprotective, anti-inflammatory, hypolipidemic, antihypertensive and antibacterial effects. A. graveolens possesses wide spectrum of pharmacological activities and is a nontoxic plant; A. graveolens-based medicines will have high margin of safety. The results obtained provide opportunities for making herbal pharmaceutical celery-based substances and introduction thereof into the academic medicine.
Cite this article:
Makarova E.I., Bokov D.O., Sergunova E.V., Chevidaev V.V., Kakhramanova S.D., Bessonov V.V., Friesen N.V., Luferov A.N. Apium graveolens L.: A Phytochemical and Pharmacological Review. Research Journal of Pharmacy and Technology. 2022; 15(2):927-4. doi: 10.52711/0974-360X.2022.00155
Cite(Electronic):
Makarova E.I., Bokov D.O., Sergunova E.V., Chevidaev V.V., Kakhramanova S.D., Bessonov V.V., Friesen N.V., Luferov A.N. Apium graveolens L.: A Phytochemical and Pharmacological Review. Research Journal of Pharmacy and Technology. 2022; 15(2):927-4. doi: 10.52711/0974-360X.2022.00155 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-2-75
REFERENCES:
1. Fazal SS, Singla RK. Review on the Pharmacognostical & Pharmacological Characterization of Apium graveolens Linn. Indo Global Journ. Pharmaceutical Sciences. 2012; 2(1): 36-42.
2. Karomatov ID, Ganiev R. Effective remedy – celery. Biology and Integrative Medicine, 2018. 6: 188-201[In Russian].
3. Kooti W, Ali-Akbari S, Asadi-Samani M, Ghadery H, Ashtary-Larky D. A review on medicinal plant of Apium graveolens. Advanced Herbal Medicine. 2015; 1(1): 48-59.
4. Drude O. Umbelliferae (Apiaceae). In: A. Engler Die natürlichen Pflanzenfamilien. 1898; 3(8): 63-250.
5. Takhtajan A. Flowering plants. Ed. 2. Ney York: Springer Science Business Media B.V. 2009; XIV. 871 p.
6. Downie SR, Ramanath S, Katz-Downie DS, Llanas E. Molecular systematics of Apiaceae subfamily Apioideae: phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer and plastid rpoC1 intron sequences. American Journ. Botany. 1998; 85(4): 563-591. doi.org/10.2307/2446441
7. Downie SR, Katz-Downie DS, Watson MF. A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpl16 and rpoC1 intron sequences: towards a suprageneric classification of subfamily Apioideae. American Journ. Botany. 2000; 87(2): 273-292. doi.org/ 10.2307/2656915
8. Downie SR, Spalik K, Katz-Downie DS, Reduron J-P. Major clades within Apiaceae subfamily Apioideae as inferred by phylogenetic analysis of nrDNA ITS sequences. Plant Div. Evolution. 2010; 128(1-2): 111-136. doi.org/10.1127/1869-6155/2010/0128-0005
9. Herden T, Friesen N. Ecotypes or phenotypic plasticity – The aquatic and terrestrial forms of Helosciadium repens (Apiaceae). Ecology and Evolution, 2019. 9(24): 13954-13965. doi.org/ 10.1002/ece3.5833
10. Herden T, Friesen N, Bönisch M. Genetic diversity of Helosciadium repens (Jacq.) W.D.J. Koch (Apiaceae) in Germany, a crop wild relative of celery. Ecology and evolution. 2020; 10(2): 875-890. doi.org/ 10.1002/ece3.5947
11. Schischkin BK. The genus celery – Apium L. Flora URSS. Moscow - Leningrad: Ed. Acad. Scient. URSS, 1950. 16: 370-372 [In Russian].
12. Apium L. The Plant List. Version 1.1 - 2013. (Date of access 18.01.2021).
13. Pimenov MG, Ostroumova TA. Umbelliferae of Russia. Ed.: Prof. V.N. Pavlov, Dr. E.V. Kljuykov. Moscow: KMK Scientific Press. 2012; 477 p., il., with attached CD [In Russian].
14. Frese L, Bönisch M, Nachtigal M, Schirmak U. Patterns of genetic diversity and inplications for in situ conservation of wild celery (Apium graveolens L. ssp. graveolens). Agriculture. 2018; 8: 129. doi.org/ 10.3390/agriculture8090129
15. Levandovskaya LI. Celery-Apium L. Kulturnaya flora SSSR. XIX. Root-bearing plants. Leningrad: Kolos. 1971; 393-409 [In Russian].
16. Rubatsky VE, Kyros KF, Simon FV. Carrots and other vegetable crops of the Apiaceae L. family. M .: Partnership of scientific publications KMK. 2007; 358 p. [In Russian].
17. Naumov SYu. Apium-type of leaf formation in the Apiaceae L. family. Coll. scientific works of Lugansk NAU. Series Biological Sciences. Lugansk: Elton-2. 2004; 39 (51): 21-25. [In Russian].
18. Krug G. Vegetable. M .: Kolos. 2000; 576 p. [In Russian].
19. Ivanova MI. Celery and parsley (breeding and primary seed production: theory, methodology, practice.). Saarbrucken, Germany. 2012; 15-19 [In Russian].
20. Savelieva LF. Medicinal plants around us: essays on medicinal plants of the Volgograd region. 2013; 351-352. [In Russian].
21. Botanical and geographical foundations of breeding (the doctrine of the source material in breeding). Moscow-Leningrad: Selkhozizdat. 1935; 60 p. [In Russian].
22. Pimenov MG. Updated checklist of Chinese Umbelliferae: nomenclature, synonymy, typification, distribution. Turczaninowia. 2017; 20(2): 106-239. doi.org/10.14258/turczaninowia.21.1.10
23. Pimenov MG. Updated checklist of the Umbelliferae of Middle Asia and Kazakhstan: nomenclature, synonymy, typification, distribution. Turczaninowia. 2020; 23(4): 127-257. doi.org/ 10.14258/turczaninowia.23.4.12
24. Tzvelev NN. Manual of the Vascular Plants of North-West Russia (Leningrad, Pskov and Novgorod provinces). St.-Petersburg: St.-Petersburg State Chemical-Pharmaceutical Academy Press. 2000; 781 p. [In Russian].
25. Ivanova MI, Alekseeva KL, Baleev DN, Kornev AV, Bukharov AF, Kashleva AI. Biochemical composition of varieties of celery root in the conditions of the Moscow region Proceedings of the II international conference “the role of metabolomics in improving biotechnological means of production” 2019. 346-349. [In Russian].
26. Zhou K, Wu B, Zhuang Y, Ding L, Liu Z, Qiu F. Chemical constituents of fresh celery. Zhongguo Zhong Yao Za Zhi. 2009; 34(12): 1512-1515.
27. Zhou K, Zhao F, Liu Z, Zhuang Y, Chen L, Qiu F. Triterpenoids and flavonoids from celery (Apium graveolens). Journ. Nat. Prod. 2009; 72(9): 1563-1567. doi.org/ 10.1021/np900117v
28. Sowbhagya HB. Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): an overview. Crit. Rev. Food. Sci. Nutr. 2014; 54(3): 389-398. doi.org/ 10.1080/10408398.2011.586740
29. Nagella P, Ahmad A, Kim SJ, Chung IM. Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharmacol. Immunotoxicol. 2012. 34(2): 205-209. doi.org/ 10.3109/08923973.2011.592534
30. Ivanov DI, Ivanova NN, Artyushkina EP. Mineral composition of root celery as a functional food product, depending on weather conditions. Bulletin of Altai State Agrarian University. 2016; 1(135). 23-27 [In Russian].
31. Zidorn C, Johrer K, Ganzera M. et al. Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. Journ. Agric. Food. Chem. 2005; 53(7): 2518-2523. doi.org/ 10.1021/jf048041s
32. Terninko II. Development of approaches to the standardization of herbs of plants of the celery family. Bulletin of KazNMU. 2013; 5-3: 62-65 [In Russian].
33. Pshukova IV, Kuleshova SA. Phytochemical study and assessment of the pharmacological activity of aqueous extracts of the Apium graveolens L. herb. Khimija Rastitel’nogo Syr’ja. 2013; 3: 207-212 [In Russian].
34. Glumova NV, Bogodist-Timofeeva EYu, Nozhko ES. Natural flavors in the production of mayonnaise products. Scientific works of the Kuban State Technical University. 2019; 1: 355 [In Russian].
35. Kharchenko VA, Moldovan AI, Golubkina NA, Koshevarov AA, Caruso D. Antioxidant status of celery (Apium graveolens L.). Vegetables of Russia. 2020; 2: 82-86 [In Russian].
36. Kopylova NA, Laman NA. Conditions for the extraction of tocopherols from celery leaves (Apium graveolens L.) in preparation for HPLC analysis. Biologically active substances of plants – study and use, Minsk. 2013; 130-131 [In Russian].
37. Yao Y, Sang W, Zhou M, Ren G. Phenolic composition and antioxidant activities of 11 celery cultivars. Journ. Food. Sci. 2010; 75(1): 9-13. doi.org/ 10.1111/j.1750-3841.2009.01392.x
38. Abdoulaye IA, Guo YJ. A Review of Recent Advances in Neuroprotective Potential of 3-N-Butylphthalide and Its Derivatives. Biomed Res Int. 2016; 501: 23-41. doi.org/ 10.1155/2016/5012341
39. Zhang L, Yu WH, Wang YX et al. DL-3-n-Butylphthalide, an anti-oxidant agent, prevents neurological deficits and cerebral injury following stroke per functional analysis, magnetic resonance imaging and histological assessment. Curr. Neurovasc. Res. 2012; 9(3): 167-75. doi.org/ 10.2174/156720212801618956
40. Wang S, Ma F, Huang L et al. Dl-3-n-Butylphthalide (NBP): A Promising Therapeutic Agent for Ischemic Stroke. CNS Neurol. Disord. Drug Targets. 2018; 17(5): 338-347. doi.org/ 10.2174/1871527317666180612125843
41. Zhang L, Lu L, Chan WM, Huang Y, Wai MS, Yew DT. Effects of DL-3-n-butylphthalide on vascular dementia and angiogenesis. Neurochem. Res., 2012. 37(5): 911-919. doi.org/10.1007/s11064-011-0663-3
42. Xiang J, Pan J, Chen F et al. L-3-n-butylphthalide improves cognitive impairment of APP/PS1 mice by BDNF/TrkB/PI3K/AKT pathway. Intern. Journ. Clin. Exp. Med. 2014; 7(7): 1706-1713.
43. Zhang Y, Huang LJ, Shi S, Xu SF, Wang XL, Peng Y. L-3-n-butylphthalide Rescues Hippocampal Synaptic Failure and Attenuates Neuropathology in Aged APP/PS1 Mouse Model of Alzheimer's Disease. CNS Neurosci. Ther. 2016; 22(12): 979-987. doi.org/ 10.1111/cns.12594
44. Boonruamkaew P, Sukketsiri W, Panichayupakaranant P et al. Apium graveolens extract influences mood and cognition in healthy mice. Journ. Nat. Med. 2017; 71(3):492-505. doi.org/ 10.1007/s11418-017-1077-6
45. Moghadam MH, Imenshahidi M, Mohajeri SA. Antihypertensive effect of celery seed on rat blood pressure in chronic administration. J Med Food. 2013; 16(6):558-563. doi.org/ 10.1089/jmf.2012.2664
46. Jorge VG, Angel JR, Adrian TS et al. Vasorelaxant activity of extracts obtained from Apium graveolens: possible source for vasorelaxant molecules isolation with potential antihypertensive effect. Asian Pacif. Journ. Trop. Biomed. 2013; 3(10):776-779. doi.org/ 10.1016/S2221-1691(13)60154-9
47. Siska S, Mun IA, Bahtiar A, Suyatna FD. Effect of Apium graveolens Extract Administration on the Pharmacokinetics of Captopril in the Plasma of Rats. Sci. Pharm. 2018; 86(1): E6 doi.org/ 10.3390/scipharm86010006
48. Atta AH, Alkofahi A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. Journ. Ethnopharmacol. 1998; 60(2): 117-124. doi.org/ 10.1016/S0378-8741(97)00137-2
49. Mencherini T, Cau A, Bianco G, Della Loggia R, Aquino RP, Autore G. An extract of Apium graveolens var. dulce leaves: structure of the major constituent, apiin, and its anti-inflammatory properties. Journ. Pharm. Pharmacol. 2007; 59(6): 891-897. doi.org/10.1211/jpp.59.6.0016
50. Zhu LH, Bao TH, Deng Y, Li H, Chen LX. Constituents from Apium graveolens and their anti-inflammatory effects. Journ. Asian Nat. Prod. Res. 2017; 19 (11): 1079-1086. doi.org/ 10.1080/10286020.2017.1381687
51. Powanda MC, Whitehouse MW, Rainsford KD. Celery Seed and Related Extracts with Antiarthritic, Antiulcer, and Antimicrobial Activities. Prog. Drug Res. 2015; 70: 133-153. doi.org/ 10.1007/978-3-0348-0927-6_4
52. Marongiu B, Piras A, Porcedda S et al. Isolation of the volatile fraction from Apium graveolens L. (Apiaceae) by supercritical carbon dioxide extraction and hydrodistillation: chemical composition and antifungal activity. Nat. Prod. Res. 2013; 27(17):1521-1527. doi.org/ 10.1080/14786419.2012.725402
53. Baananou S, Bouftira I, Mahmoud A, Boukef K, Marongiu B, Boughattas NA. Antiulcerogenic and antibacterial activities of Apium graveolens essential oil and extract. Nat. Prod. Res. 2013; 27(12): 1075-1083. doi.org/ 10.1080/14786419.2012.717284
54. Grube K, Spiegler V, Hensel A. Antiadhesive phthalides from Apium graveolens fruits against uropathogenic E. coli. Journ. Ethnopharmacol. 2019; 237: 300-306. doi.org/ 10.1016/j.jep.2019.03.024
55. Zhou Y, Taylor B, Smith TJ et al. A novel compound from celery seed with a bactericidal effect against Helicobacter pylori. Journ. Pharm. Pharmacol. 2009; 61(8): 1067-1077. doi.org/ 10.1211/jpp.61.08.0011
56. Momin RA, Nair MG. Mosquitocidal, nematicidal, and antifungal compounds from Apium graveolens L. seeds. Journ. Agric. Food. Chem. 2001; 49(1): 142-145. doi.org/10.1021/jf001052a
57. Al-Howiriny T, Alsheikh A, Alqasoumi S, Al-Yahya M, ElTahir K, Rafatullah S. Gastric antiulcer, antisecretory and cytoprotective properties of celery (Apium graveolens) in Rats. Pharm. Biol. 2010; 48(7): 786-793. doi.org/ 10.3109/13880200903280026
58. Azimi M, Zahedi M, Mehrabani M, Tajadini H, Zolala F, Baneshi M, Choopani, R, Sharififar F, Asadipour A, Hayatbakhsh M, Ahmadi B. Effect of Apium graveolens and Trachyspermum copticom on clinical symptoms of patients with functional dyspepsia. Avicenna Journ. Phytomedicine. 2017; 7(6): 554-564.
59. Iyer D, Patil UK. Effect of chloroform and aqueous basic fraction of ethanolic extract from Apium graveolens L. in experimentally-induced hyperlipidemia in rats. Journ. Complement. Integr. Med. 2011. 8:/j/jcim.2011.8.issue-1/1553-3840.1529/1553-3840.1529.xml. Published 2011 Sep 27.
60. Tashakori-Sabzevar F, Ramezani M, Hosseinzadeh H et al. Protective and hypoglycemic effects of celery seed on streptozotocin-induced diabetic rats: experimental and histopathological evaluation. Acta Diabetol. 2016; 53(4): 609-619. doi.org/10.1007/s00592-016-0842-4
61. Tsi D, Das NP, Tan BK. Effects of aqueous celery (Apium graveolens) extract on lipid parameters of rats fed a high fat diet. Planta Med. 1995; 61(1): 18-21. doi.org/10.1055/s-2006-957990
62. Ahmed B, Alam T, Varshney M, Khan SA. Hepatoprotective activity of two plants belonging to the Apiaceae and the Euphorbiaceae family. Journ. Ethnopharmacol. 2002; 79(3): 313-316. doi.org/ 10.1016/S0378-8741(01)00392-0
63. Shivashri C, Rajarajeshwari T, Rajasekar P. Hepatoprotective action of celery (Apium graveolens) leaves in acetaminophen-fed freshwater fish (Pangasius sutchi). Fish. Physiol. Biochem. 2013; 39(5): 1057-1069. doi.org/ 10.1007/s10695-012-9762-6
64. Singh A, Handa SS. Hepatoprotective activity of Apium graveolens and Hygrophila auriculata against paracetamol and thioacetamide intoxication in rats. Journ. Ethnopharmacol. 1995; 49(3): 119-126. doi.org/ 10.1016/0378-8741(95)01291-5
65. Jaiswal S, Chavhan SA, Shinde SA, Wawge NK. New Tools for Herbal Drug Standardization. Asian J. Res. Pharm. Sci. 2018; 8(3): 161-169. doi.org/10.5958/2231-5659.2018.00029.2
66. Ekka NR, Namdeo KP, Samal PK. Standardization Strategies for Herbal Drugs-An Overview. Research J. Pharm. and Tech. 2008; 1(4): 310-312.
67. Bokov DO. Standardization of snowdrop (Galanthus L.) herbal pharmaceutical substances by ultraviolet-spectrophotometry. Asian J Pharm Clin Res. 2018; 11(10): 207-211.
68. Bokov DO, Nizamova LA, Morokhina SL et al. Pharmacognostic studies of Origanum L. species Medicinal plant raw materials. Research Journal of Pharmacy and Technology. 13(9); 4365-4372. doi.org/ 10.5958/0974-360X.2020.00772.6
69. Bokov DO, Kulaeva IR, Potanina OG et al. Carbohydrates determination in the Snowdrops (Galanthus L.) herbal pharmaceutical substances by TLC and UV-Spectrophotometry. Research Journal of Pharmacy and Technology. 2020; 13(1):243-249. doi.org/10.5958/0974-360X.2020.00049.9
70. Sukmana BI, Edyson, Thahir H, Achmad H, Huldani, Bokov DO. Research review on secondary metabolite compounds of Mangifera casturi bark and their functions. International Journal of Pharmaceutical Research. 2020; 3(12): 2155-2161. doi.org/10.31838/ijpr/2020.12.03.309
71. Vatnikov Y, Shabunin S, Karamyan A et al. Antimicrobial activity of Hypericum perforatum L. International Journal of Pharmaceutical Research. 2020; 12: 723-730. doi.org/ 10.31838/ijpr/2020.SP1.113
72. Vatnikov Y, Rudenko P, Shopinskaya M et al. Effectiveness of biologically active substances from Hypericum perforatum L. in the complex treatment of purulent wounds. International Journal of Pharmaceutical Research. 2020; 4(12): 1108-1117. doi.org/10.31838/ijpr/2020.12.04.078
73. Zhilkina V, Sachivkina NP, Ibragimova AN, Kovaleva TY, Molchanova MA, Radeva DV. Methods for the identification and quantitative analysis of biologically active substances from vitamin plants raw material. FEBS Open Bio. 2019; 9(S1): 285-286.
74. Sindhu RK, Kaur P. Regulatory requirements and stability testing of ethnomedicinal plant products. Research J. Pharm. and Tech. 2020; 13(3):1538-1542. doi.org/ 10.5958/0974-360X.2020.00279.6
75. Nishith MC, Venkatesh MP. Herbal Drug Regulatory Landscape: Key Comparison between Russia and India. Research J. Pharm. and Tech. 2019; 12(12): 6153-6156. doi.org/ 10.5958/0974-360X.2019.01069.2
76. Mustafa A, Alvi AI, Siddiqui ZA, Meena RP. Heavy metals determination in Microwave digested aqueous extracts of fresh and market samples of some Plant origin drugs with reference to their preliminary comparative physico-chemical evaluation. Res. J. Pharmacognosy and Phytochem. 2021; 13(1):11-17.
77. Njoku UU, Elijah JP, Offor LI, Okoli CO. Antioxidant Properties of Apium graveolens. Research J. Pharmacognosy and Phytochemistry. 2011; 3(5): 201-205.
78. Nair SN, Varghese A, Meenu B, Rejimon G, Neeraja ED. Comparative evaluation of Coriandrum sativum Linn. and Apium graveolens for Antimicrobial activity. Research J. Pharm. and Tech. 2017; 10(2): 541-544. doi.org/ 10.5958/0974-360X.2017.00108.1
79. Nair SN, Neeraja ED, Rejimon G, Meenu B, Varghese A. Comparative evaluation of the anthelmintic activity of Coriandrum sativum Linn. and Apium graveolens Linn. Research J. Pharm. and Tech. 2017; 10(11): 3857-3859. doi.org/10.5958/0974-360X.2017.00699.0
80. Naki ZJ, Kadium DAH, Al-Shammari ZMJ. Effect of alcoholic extract of celery seeds Apium graveolens on the histological characteristic ovaries of Swiss rat ratus. Research J. Pharm. and Tech. 2018; 11(1): 193-198. doi.org/10.5958/0974-360X.2018.00036.7
81. Satone BD, Deshmukh AA, Undale VR. Preclinical evaluation of antihypertensive activity of combination of herbs extract in Wistar Rats. Research J. Pharm. and Tech. 2020; 13(5):2069-2075. doi.org/ 10.5958/0974-360X.2020.00372.8