Author(s): Annise Proboningrat, Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Rinza Rahmawati, Amaq Fadholly, Gabrielle Ann Villar Posa, Sri Agus Sudjarwo, Fedik Abdul Rantam, Agung Budianto Achmad

Email(s): ab.achmad@vokasi.unair.ac.id

DOI: 10.52711/0974-360X.2022.00209   

Address: Annise Proboningrat1, Viol Dhea Kharisma2, Arif Nur Muhammad Ansori1, Rinza Rahmawati3, Amaq Fadholly1, Gabrielle Ann Villar Posa4, Sri Agus Sudjarwo5, Fedik Abdul Rantam6,7, Agung Budianto Achmad8*
1Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, 60115, Surabaya, Indonesia.
2Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, 65145, Malang, Indonesia.
3Department of Chemistry, Faculty of Health Sciences, Muhammadiyah University of Surabaya, 60113, Surabaya, Indonesia.
4School of Environmental Science and Management, University of the Philippines Los Baños, Los Baños, Philippines.
5Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, 60115, Surabaya, Indonesia.
6Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, 60115, Surabaya, Indonesia.
7Research Center for Vaccine Technology and Development, Institute of Tropical Disease,

Published In:   Volume - 15,      Issue - 3,     Year - 2022


ABSTRACT:
Globally, the leading cause of death from cancer in women is infection with the human papillomavirus (HPV). This calls for imperative actions to explore anticancer drugs against this threatening viral infection, in which case, natural ingredients are presumed to be a promising source. Several studies show that plant-origin compounds such as allicin, apigenin, capsaicin, cyanidin, fisetin, genistein, laricitrin, naringenin, piperine, and syringetin have demonstrated therapeutic effects against several cancer types. In this study, the interaction mechanism of these compounds with HPV-18 E6 oncoprotein, that is known to downregulate tumor suppressor p53, was predicted using an in silico approach. Molecular docking simulations of natural ligands and E6 protein were performe, followed by chemical interaction analysis and 3D molecular visualization. Results indicated that fisetin is the best natural inhibitor as it has the lowest binding energy. It is highly recommended that the results of this study be used as a reference in designing anticancer drugs in vitro and in vivo.


Cite this article:
Annise Proboningrat, Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Rinza Rahmawati, Amaq Fadholly, Gabrielle Ann Villar Posa, Sri Agus Sudjarwo, Fedik Abdul Rantam, Agung Budianto Achmad. In silico Study of Natural inhibitors for Human papillomavirus-18 E6 protein. Research Journal of Pharmacy and Technology. 2022; 15(3):1251-6. doi: 10.52711/0974-360X.2022.00209

Cite(Electronic):
Annise Proboningrat, Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Rinza Rahmawati, Amaq Fadholly, Gabrielle Ann Villar Posa, Sri Agus Sudjarwo, Fedik Abdul Rantam, Agung Budianto Achmad. In silico Study of Natural inhibitors for Human papillomavirus-18 E6 protein. Research Journal of Pharmacy and Technology. 2022; 15(3):1251-6. doi: 10.52711/0974-360X.2022.00209   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-3-52


REFERENCES:
1.    Chang Y. Moore PS. Weiss RA. Human oncogenic viruses: nature and discovery. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences. 2017; 372. doi.org/10.1098/rstb.2016.0264
2.    Nabati F. Moradi M. Mohabatkar H. In silico analyzing the molecular interactions of plant-derived inhibitors against E6AP, p53, and c-Myc binding sites of HPV type 16 E6 oncoprotein. Molecular Biology Research Communications. 2020; 9(2): 71-82. doi.org/10.22099/mbrc.2020.36522.1483
3.    Johari B. Ebrahimi-Rad M. Maghsood F. Lotfinia M. Saltanatpouri Z. Teimoori-Toolabi L. Sharifzadeh Z. Karimipoor M. Kadivar M. Myc decoy oligodeoxynucleotide inhibits growth and modulates differentiation of mouse embryonic stem cells as a model of cancer stem cells. Anti-cancer Agents in Medicinal Chemistry. 2017; 17: 1786-1795. doi.org/10.2174/1871521409666170412142507
4.    Johari B. Zargan J. Simultaneous targeted inhibition of Sox2‐Oct4 transcription factors using decoy oligodeoxynucleotides to repress stemness properties in mouse embryonic stem cells. Cell Biology International. 2017; 41: 1335-1344. doi.org/10.1002/cbin.10847
5.    Tambunan USF. Parikesit AA. HPV Bioinformatics: In silico detection, drug design and prevention agent development. In: Topics on Cervical Cancer With an Advocacy for Prevention. InTech. 2012 doi.org/10.5772/27456
6.    Kumar S. Jena L. Mohod K. Daf S. Varma AK. Virtual screening for potential inhibitors of high-risk human papillomavirus 16 E6 protein. Interdisciplinary Sciences, Computational Life Sciences. 2015; 1-7. doi:10.1007/s12539-013-0213-6
7.    Park MS. Chang BS. Ultrastructural characteristics of hpv in women’s vaginal cells. Research Journal of Pharmacy and Technology. 2019; 12(9): 4305-4309. doi.org/10.5958/0974-360X.2019.00740.6
8.    Kumar S. Jena L. Sahoo M. Kakde M. Daf S. Varma AK. In silico docking to explicate interface between plant-originated inhibitors and E6 oncogenic protein of highly threatening human papillomavirus 18. Genomics & Informatics. 2015; 13(2): 60-67. doi.org/10.5808/GI.2015.13.2.60
9.    Merkhofer C. Maslow J. Human Papilloma virus (HPV) infection and non-cervical oncogenic disease states. Virology & Mycology. 2015; 4: 2. doi.org/10.4172/2161-0517.1000144
10.    Bharatha Soruba Rani S. HPV infection and cervical cancer. International Journal of Nursing Education and Research. 2015; 3(2): 229-231. doi.org/10.5958/2231–5713
11.    Fernandes JV. Fernandes TAAM. Human papillomavirus: biology and pathogenesis. In: Human papillomavirus and related diseases – from bench to bedside – a clinical perspective. InTech. 2012; 1-5. doi.org/10.5772/27154
12.    Pinidis P. Tsikouras P. Iatrakis G. Zervoudis S. Koukouli Z. Bothou A. Galazios G. Vladareanu S. Human papilloma virus’ life cycle and carcinogenesis. MAEDICA – a Journal of Clinical Medicine. 2016; 11(5): 48-54. Retrieved from  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394500
13.    de Sanjose S. Brotons M. Pavon MA. The natural history of human papillomavirus infection. Best practice & research. Clinical Obstetrics & Gynaecology. 2018; 47: 2-13. doi.org/10.1016/j.bpobgyn.2017.08.015
14.    Kharisma VD. Ansori ANM. Widyananda MH. Utami SL. Nugraha AP. Molecular simulation: The potency of conserved region on E6 HPV-16 as a binding target of black tea compounds against cervical cancer. Biochemical and Cellular Archives. 2020; 20(1): 2795-2802. doi.org/10.35124/bca.2020.20.S1.2795
15.    Messa L. Celegato M. Bertagnin C. Mercorelli B. Nannetti G. Palù G. Loregian A. A quantitative LumiFluo assay to test inhibitory compounds blocking p53 degradation induced by human papillomavirus oncoprotein E6 in living cells. Scientific Reports. 2018; 8: 1-11. doi.org/10.1038/s41598-018-24470-4
16.    Marimuthu N. Viswanathan T. Radha M. Suganya J. Computational Screening of the phytocompounds from the plant Ballota nigra Linn against the human papillomavirus (HPV) E6. Research Journal of Pharmacy and Technology. 2017; 10(9): 3095-3097. doi.org/10.5958/0974-360X.2017.00549.2
17.    Proboningrat A. Ansori ANM. Fadholly A. Putri N. Kusala MKJ. Achmad AB. First report on the cytotoxicity of Pinus merkusii bark extract in WiDr, a human colon carcinoma cell line. Research Journal of Pharmacy and Technology. 2021; 14(3): 1685-1688. doi.org/10.5958/0974-360X.2021.00299.7
18.    Zhang Q. Yang D. Allicin suppresses the migration and invasion in cervical cancer cells mainly by inhibiting NRF2. Experimental and Therapeutic Medicine. 2019; 17: 1523-1528. doi.org/10.3892/etm.2018.7104
19.    Imran M. Gondal TA. Atif M. Shahbaz M. Qaisarani TB. Mughal MH. Salehi B. Martorell M. Rad JS. Apigenin as an anticancer agent. Phytotherapy Research. 2020; 1-17. doi.org/10.1002/ptr.6647
20.    Zhang S. Wang D. Huang J. Hu Y. Xu Y. Application of capsaicin as a potential new therapeutic drug in human cancers Journal of Clinical Pharmacy and Therapeutics. 2019; 45: 16-28. doi.org/10.1111/jcpt.13039
21.    Sorrenti V. Vanella L. Acquaviva R. Cardile V. Giofre S. Giacomo CD. Cyanidin induces apoptosis and differentiation in prostate cancer cells. International Journal of Oncology. 2015; 47: 1303-1310. doi.org/10.3892/ijo.2015.3130
22.    Kumar R. Kumar R. Khursheed R. Kapoor B. Sharma N. Khurana S. Khurana N. Singh SK. Vyas M. Development and validation of uv spectroscopic method for estimation of fisetin in self nanoemulsifying drug delivery system. Research Journal of Pharmacy and Technology. 2020; 13(3): 1179-1182. doi.org/10.5958/0974-360X.2020.00217.6
23.    Imran M. Saeed F. Gilani SA. Shariati MA. Imran A. Afzaal M. Atif M. Tufail T. Anjum FM. Fisetin: An anticancer perspective. Food Science & Nutrition. 2020; 9(1): 3-16. doi.org/10.1002/fsn3.1872
24.    Tuli HS. Tuorkey MJ. Thakral F. Sak K. Kumar M. Sharma AK. Sharma U. Jain A. Aggarwal V. Bishayee A. Molecular mechanisms of action of genistein in cancer: recent advances. Frontiers in Pharmacology. 2019; 10: 1-16. doi.org/10.3389/fphar.2019.01336
25.    Chang WA. Hung JY. Jian SF. Lin YS. Wu CY. Hsu YL. Kuo PL. Laricitrin ameliorates lung cancer-mediated dendritic cell suppression by inhibiting signal transducer and activator of transcription 3. Oncotarget. 2016; 7(51): 85220-85234. doi.org/10.18632/oncotarget.13240
26.    Fadholly A. Ansori ANM. Sucipto TH. An Overview of Naringin: Potential anticancer compound of citrus fruits. Research Journal of Pharmacy and Technology. 2020; 13(11): 5613-5619. doi.org/10.5958/0974-360X.2020.00979.8
27.    Rodriguez OPM. Torres AG. Salas LMA. Sanchez HH. Perez BEG. Bonilla MRT. Flores MEJ. Effect of naringenin and its combination with cisplatin in cell death, proliferation and invasion of cervical cancer spheroids. RSC Advances. 2020; 11: 129-141. doi.org/10.1039/D0RA07309A
28.    El-Aasr M. Kabbash A. El-Seoud KAA. Al-Madboly LA. Ikeda T. Antimicrobial and immunomodulatory activities of flavonol glycosides isolated from Atriplex halimus L. herb. Journal of Pharmaceutical Sciences and Research. 2016; 8(10): 1159-1168. Retrieved from https://www.jpsr.pharmainfo.in/issue.php?page=86
29.    Sindhu TJ. Arathi KN. Akhilesh KJ. Anju J. Binsiya KP. Thomas B. Wilson E. Antiviral screening of clerodol derivatives as COV 2 main protease inhibitor in novel corona virus disease: In silico approaches. Asian Journal of Pharmacy and Technology. 2020; 10(2): 60-64. doi.org/10.5958/2231-5713.2020.00012.4
30.    Kharisma VD. Syafrudin S. Septiadi L. Prediction of novel bioactive compound from Z. officinale as non-nucleoside reverse transcriptase inhibitors (NNRTIs) of HIV-1 through computational study. Bioinformatics and Biomedical Research Journal. 2018; 1(2): 49-55. doi.org/10.11594/bbrj.01.02.05
31.    Ray NM. Singh R. Singh J. Bhati S. Kaushik V. Computational screening of thiohydantoin derivatives for antitumor activity. Research Journal of Pharmacy and Technology. 2020; 13(2): 795-800. doi.org/10.5958/0974-360X.2020.00150.X
32.    Daina A. Michielin O. Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017; 7: 42717. doi.org/10.1038/srep42717
33.    Kharisma VD. Ansori ANM. Nugraha AP. Computational study of ginger (Zingiber officinale) as E6 inhibitor in human papillomavirus type 16 (Hpv-16) infection. Biochemical and Cellular Archives. 2020; 20(1): 3155-3159. doi.org/10.35124/bca.2020.20.S1.3155
34.    Purnama ER. Kharisma VD. Epitope mapping of capsid protein L1 from human papillomavirus to development cervical cancer vaccine through computational study. Journal of Physics: Conference Series. 2018; 1108: 1-6. doi.org/10.1088/1742-6596/1108/1/012096
35.    Adianingsih OR. Kharisma VD. Study of B cell epitope conserved region of the Zika virus envelope glycoprotein to develop multi-strain vaccine. Journal of Applied Pharmaceutical Science. 2019: 9(1): 98-103. doi.org/10.7324/JAPS.2019.90114
36.    Fernandes TB. Segretti MCF. Polli MC. Filho RP. Analysis of the applicability and use of Lipinski`s rule for central nervous system drugs. Letters in Drug Design & Discovery. 2016; 13: 1-8. doi.org/10.2174/1570180813666160622092839
37.    Buvana C. Sumathy A. Sukumar M. In silico Identification of potential xanthine oxidase inhibitors for the treatment of gout and cardiovascular disease.  Asian Journal of Pharmacy and Technology. 2013; 6(11): 1049-1053. doi.org/10.5958/0974-4150
38.    Lipinski CA. Lombardo F. Dominy BW. Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 2001; 46(1-3): 3-26. doi.org/10.1016/s0169-409x(00)00129-0
39.    Kharisma VD. Kharisma SD. Ansori ANM. Kurniawan HP. Witaningrum AM. Fadholly A. Tacharina MR. Antiretroviral effect simulation from black tea (Camellia sinensis) via dual inhibitors mechanism in HIV-1 and its social perspective in Indonesia. Research Journal of Pharmacy and Technology. 2021; 14(1): 455-460. doi.org/10.5958/0974-360X.2021.00083.4
40.    Sukmanadi M. Sudjarwo SA. Effendi MH. Molecular mechanism of capsaicin from (Capsicum annuum L.) on expression of MAPK1 and AKT1 protein as candidate of anticancer drugs: In silico study. Pharmacognosy Journal. 2020; 12(4): 916-919. doi.org/10.5530/pj.2020.12.130
41.    Widyananda MH. Pratama SK. Samoedra RS. Sari FN. Kharisma VD. Ansori ANM. Antonius Y. Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins. J Pharm Pharmacogn Res. 2021; 9(4): 484-496. Retrieved from https://jppres.com/jppres/sea-urchin-peptides-as-multi-target-inhibitor-of-nsclc
42.    Hassan NM. Alhossary AA. Mu Y. Kwoh CK. Protein ligand blind docking using QuickVina-W with inter-process spatio-temporal integration. Scientific Reports. 2017; 7(1): 15451. doi.org/10.1038/s41598-017-15571-7
43.    Ramírez D. Caballero J. Is it reliable to use common molecular docking methods for comparing the binding affinities of enantiomer pairs for their protein target? International Journal of Molecular Sciences. 2016; 17(4): 525. doi.org/10.3390/ijms17040525
44.    Durell SR. Ben-Naim A. Hydrophobic-hydrophilic forces in protein folding. Biopolymers. 2017: 107: 8. doi.org/10.1002/bip.23020

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available