ABSTRACT:
Carteolol HCl (CRT) is a non-selective beta blocker used to treat glaucoma. Currently, it is delivered via eye drop solutions, which suffer from many limitations (e.g. low bioavailability, high dose requirements and noncompliance). Contact lenses are used by scientists to control the release of ocular drugs, and they are considered as a promising therapeutic tool. This research aimed to evaluate the effect of oleic acid (OA) incorporation on CRT loading and its release from commercial silicone contact lens using the soaking method. Two different concentrations of oleic acid solution (35 and 60mg/ml) and one concentration of CRT solution (2 mg/ml) were used. Drug release profile and various lens properties including changes in visible light transmittance, water content, lens diameter and tensile modulus were investigated. The two used concentrations of oleic acid solution (35 and 60mg/ml) led to oleic acid loadings of 14.6% and 24% respectively, which in turn enhanced the total amount of released CRT by a factor of about 10 and 18, and increased the 90% drug release time by a factor of about 12 and 56, respectively for AIR OPTIX® lens. As for the characterization of prepared lenses, all the results were acceptable compared with unmodified lenses except for the change in diameter of lenses loaded with 24% of oleic acid. Our findings revealed the potential of using oleic acid to improve the uptake of CRT and to achieve sustained release kinetics without compromising the critical properties of contact lens.
Cite this article:
Hala Rayya, Lama Al haushey. Effect of Oleic acid Incorporation on delivery of Carteolol from commercial Silicone contact lenses. Research Journal of Pharmacy and Technology. 2022; 15(5):2135-0. doi: 10.52711/0974-360X.2022.00354
Cite(Electronic):
Hala Rayya, Lama Al haushey. Effect of Oleic acid Incorporation on delivery of Carteolol from commercial Silicone contact lenses. Research Journal of Pharmacy and Technology. 2022; 15(5):2135-0. doi: 10.52711/0974-360X.2022.00354 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-5-36
REFERENCES:
1. Maaz, A., et al., Preparation of gatifloxacin microparticles by double emulsification w/o/w method for ocular drug delivery: influence of preparation parameters. Research Journal of Pharmacy and Technology, 2017. 10(5): p. 1277-1288. doi: 10.5958/0974-360X.2017.00227.X
2. Bodkhe, A.A., et al., Ophthalmic Microemulsion: Formulation Design and Process Optimization. Research Journal of pharmacy and Technology, 2018. 11(12): p. 5474-5482. doi: 10.5958/0974-360X.2018.00998.8
3. Zhang, X., X. Cao, and P. Qi, Therapeutic contact lenses for ophthalmic drug delivery: major challenges. Journal of Biomaterials Science, Polymer Edition, 2020. 31(4): p. 549-560. doi: 10.1080/09205063.2020.1712175
4. Nautiyal, D., V. Singh, and S. Ali, Formulation and Evaluation of Sustained release of Ofloxacin ocular inserts. Research journal of Pharmacy and Technology, 2012. 5(12): p. 1497-1499.
5. Holgado Villafuerte, M.Á., A. Anguiano Domínguez, and L. Martín Banderas, Contact lenses as drug-delivery systems: a promising therapeutic tool. 2020. 95(1): p. 24-33. doi: 10.1016/j.oftal.2019.07.009
6. Shinde, V., et al., Formulation and Characterization of Eudragit RS 100 Nanosuspension for Ocular Delivery of Indomethacin. Research Journal of Pharmacy and Technology, 2010. 3(3): p. 854-860.
7. Sawant, S.V., et al., Hydrogel as drug delivery system. Research Journal of Pharmacy and Technology, 2012. 5(5): p. 561-569.
8. Novack, G.D. and M. Barnett, Ocular Drug Delivery Systems Using Contact Lenses. Journal of Ocular Pharmacology and Therapeutics, 2020. 36(8): p. 595-601. doi: 10.1089/jop.2020.0024
9. Carvalho, I., et al., Sustained drug release by contact lenses for glaucoma treatment—a review. Journal of controlled release, 2015. 202: p. 76-82. doi: 10.1016/j.jconrel.2015.01.023
10. Chowdhury, S. and S. Majumdar, Fixed dose combination-its Rationality and safety. Research Journal of Pharmacy and Technology, 2010. 3(3): p. 705-708.
11. Nair, R.V., S.C. Nair, and K. Anoop, Current trends in ocular drug delivery systems and its applications. Research Journal of Pharmacy and Technology, 2015. 8(5): p. 629-636. doi: 10.5958/0974-360X.2015.00101.8
12. Bhatnagar, A., et al., Chitosan nanoparticles amplify the ocular hypotensive effect of cateolol in rabbits. International journal of biological macromolecules, 2014. 65: p. 479-91. doi: 10.1016/j.ijbiomac.2014.02.002
13. Committee, J.F., British National Formulary: BNF 68. London: BMJ. 2015, Pharmaceutical Press.
14. Nayak, S., M. Jadhav, and V. Bhaskar, Recent advances in ocular drug delivery systems. Research Journal of Pharmacy and Technology, 2016. 9(7): p. 995-1006. doi: 10.5958/0974-360X.2016.00189.X
15. Peral, A., et al., Contact Lenses as Drug Delivery System for Glaucoma: A Review. Applied sciences, 2020. 10(15): p. 5151. doi: 10.3390/app10155151
16. Guzman-Aranguez, A., B. Colligris, and J. Pintor, Contact lenses: promising devices for ocular drug delivery. Journal of ocular pharmacology and therapeutics, 2013. 29(2): p. 189-199. doi: 10.1089/jop.2012.0212
17. Hsu, K.-H., et al., Dual drug delivery from vitamin E loaded contact lenses for glaucoma therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2015. 94: p. 312-321. doi: 10.1016/j.ejpb.2015.06.001
18. Kumar, N., R. Aggarwal, and M.K. Chauhan, Extended levobunolol release from Eudragit nanoparticle-laden contact lenses for glaucoma therapy. Future Journal of Pharmaceutical Sciences, 2020. 6(1): p. 1-14. doi: 10.1186/s43094-020-00128-9
19. Wei, N., et al., Timolol loaded microemulsion laden silicone contact lens to manage glaucoma: in vitro and in vivo studies. Journal of Dispersion Science and Technology, 2020: p. 1-9. doi: 10.1080/01932691.2019.1710183
20. Costa, V.P., et al., Anti-glaucoma drug-loaded contact lenses prepared using supercritical solvent impregnation. The Journal of Supercritical Fluids, 2010. 53(1-3): p. 165-173. doi: 10.1016/j.supflu.2010.02.007
21. Torres-Luna, C., et al., Extended delivery of cationic drugs from contact lenses loaded with unsaturated fatty acids. European Journal of Pharmaceutics and Biopharmaceutics, 2020. 155: p. 1-11. doi: 10.1016/j.ejpb.2020.07.033
22. Peng, C.-C., J. Kim, and A. Chauhan, Extended delivery of hydrophilic drugs from silicone-hydrogel contact lenses containing vitamin E diffusion barriers. Biomaterials, 2010. 31(14): p. 4032-4047. doi: 10.1016/j.biomaterials.2010.01.113
23. Korogiannaki, M., et al., Timolol maleate release from hyaluronic acid-containing model silicone hydrogel contact lens materials. Journal of biomaterials applications, 2015. 30(3): p. 361-376. doi: 10.1177/0885328215581507
24. Tokuda, N., et al., Effects of a long-acting ophthalmic formulation of carteolol containing alginic acid on the corneal epithelial barrier function and water retentive effect. Journal of ocular pharmacology and therapeutics, 2012. 28(2): p. 123-128. doi: 10.1089/jop.2011.0101
25. Higashiyama, M., et al., Improvement of the ocular bioavailability of carteolol by ion pair. Journal of Ocular Pharmacology & Therapeutics, 2006. 22(5): p. 333-339. doi: 10.1089/jop.2006.22.333
26. Bhamra, T.S. and B.J. Tighe, Mechanical properties of contact lenses: The contribution of measurement techniques and clinical feedback to 50 years of materials development. Contact Lens and Anterior Eye, 2017. 40(2): p. 70-81. doi: 10.1016/j.clae.2016.11.005
27. Rad, M.S. and S.A. Mohajeri, Extended ciprofloxacin release using vitamin E diffusion barrier from commercial silicone-based soft contact lenses. Eye & contact lens, 2017. 43(2): p. 103-109. doi: 10.1097/ICL.0000000000000245
28. Tranoudis, I. and N. Efron, Tensile properties of soft contact lens materials. Contact Lens and Anterior Eye, 2004. 27(4): p. 177-191. doi: 10.1016/j.clae.2004.08.002
29. Mutlu, Z., S. Shams Es‐haghi, and M. Cakmak, Recent trends in advanced contact lenses. Advanced healthcare materials, 2019. 8(10): p. 1801390. doi: 10.1002/adhm.201801390
30. Commission, B.P., British pharmacopoeia 2009. 2008: Stationery Office (UK).
31. Sekar, P. and A. Chauhan, Effect of Vitamin-E integration on delivery of prostaglandin analogs from therapeutic lenses. Journal of colloid and interface science, 2019. 539: p. 457-467. doi: 10.1016/j.jcis.2018.12.036
32. El-Kamel, A., H. Al-Dosari, and F. Al-Jenoobi, Environmentally responsive ophthalmic gel formulation of carteolol hydrochloride. Drug delivery, 2006. 13(1): p. 55-59. doi: 10.1080/10717540500309073
33. Mythili, L., et al., Ocular drug delivery system-an update review. Research Journal of Pharmacy and Technology, 2019. 12(5): p. 2527-2538. doi: 10.5958/0974-360X.2019.00426.8
34. Rad, M.S. and S.A. Mohajeri, Simultaneously load and extended release of betamethasone and ciprofloxacin from vitamin E-loaded silicone-based soft contact lenses. Current eye research, 2016. 41(9): p. 1185-1191. doi: 10.3109/02713683.2015.1107591
35. Singh, D., S. Daharwal, and M. Rawat, Hydrogels-A potent carter in wound healing. Research Journal of Pharmacy and Technology, 2008. 1(1): p. 6-13.