Author(s): Mokhamad Fahmi Rizki Syaban, Nabila Erina Erwan, Muhammad Rafif Raihan Syamsuddin, Fatimah Az Zahra, Faradilah Lukmana Sabila

Email(s): mokhamadfahmi@gmail.com

DOI: 10.52711/0974-360X.2022.00324   

Address: Mokhamad Fahmi Rizki Syaban1*, Nabila Erina Erwan2, Muhammad Rafif Raihan Syamsuddin2, Fatimah Az Zahra2, Faradilah Lukmana Sabila2
1Faculty of Medicine, Brawijaya Univesity, Malang, 65111 Indonesia.
2Master Program in Biomedical Science, Faculty of Medicine, Brawijaya Univesity, Malang,65111, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 5,     Year - 2022


ABSTRACT:
Beta-lactamase is an enzyme protein that plays a role in the occurrence of antibiotic resistance against Methicillin-resistant Staphylococcus aureus (MRSA) bacteria. This study aims to investigate interactions that occur beta-glucan with Beta-lactamase enzymes and Protein Binding Penicillin-2a (PBP-2a). In this study, the bioinformatics approach or in-silico method was conducted to determine the molecular interactions that occurred computationally. The protein used was Beta-lactamase protein (4ooy), and Protein Binding Penicillin-2a (6h50) obtained from the Protein Data Bank. Beta-glucan as ligand obtained from the PubChem web server. Protein stabilization was carried out to adjust to the body's physiology, carried out using Pymol by removing water atoms and adding hydrogen atoms. Pharma expert web server and Pyrex were used to modulate the interaction between ligand and enzyme. We were analyzed molecular interactions visualization on the molecular complexes generated by docking simulations using the Discovery Studio software. The results showed that beta-glucan has high activity as an antibiotic against Beta-lactamase and PBP-2a. The binding affinity interaction that occurs between Beta-glucan and Beta-lactamase complex interaction was -11.1 kcal/mol, while Beta-glucan and BPP-2a was -8.5 kcal/mol. The interaction bond Beta-glucan and Beta-lactamase was higher than 2s, 5r) -1-Formyl-5 - [(Sulfooxy) amino] piperidine-2-Carboxamid as control ligand. Beta-glucan was predicted to have strong antibacterial properties. However, exploration of beta-glucan compounds and further research to determine the antibacterial effect of beta-glucan against MRSA bacteria.


Cite this article:
Mokhamad Fahmi Rizki Syaban, Nabila Erina Erwan, Muhammad Rafif Raihan Syamsuddin, Fatimah Az Zahra, Faradilah Lukmana Sabila. Insilico Study and Analysis Antibacterial Activity of Beta-glucan against Beta-Lactamase and Protein Binding Penicillin-2A. Research Journal of Pharmacy and Technology. 2022; 15(5):1948-2. doi: 10.52711/0974-360X.2022.00324

Cite(Electronic):
Mokhamad Fahmi Rizki Syaban, Nabila Erina Erwan, Muhammad Rafif Raihan Syamsuddin, Fatimah Az Zahra, Faradilah Lukmana Sabila. Insilico Study and Analysis Antibacterial Activity of Beta-glucan against Beta-Lactamase and Protein Binding Penicillin-2A. Research Journal of Pharmacy and Technology. 2022; 15(5):1948-2. doi: 10.52711/0974-360X.2022.00324   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-5-6


REFERENCES:
1.    Kharisma VD. Widyananda MH. Ansori ANM. Nege AS. Naw SW. Nugraha AP. Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. J Pharm Pharmacogn Res. 2021;9(4):435–45.
2.    Pagadala NS. Syed K. Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017 Apr;9(2):91–102. doi.org/10.1007/s12551-016-0247-1.
3.    Ansori ANM. Susilo RJK. Fadholly A. Antidiabetes type 2 phytomedicine: Mangosteen (Garcinia mangostana L.)-a review. Biochem Cell Arch. 2020;20:3173–7.
4.    Rouet R, Langley DB, Schofield P, Christie M, Roome B, Porebski BT, et al. Structural reconstruction of protein ancestry. Proc Natl Acad Sci. 2017 Apr 11;114(15):3897–902. doi.org/10.1073/pnas.1613477114.
5.    Kharisma V. Nugraha A. Computational Study of Ginger (Zingiber Officinale) as E6 Inhibitor in Human Papillomavirus Type 16 (HPV-16) Infection. Biochem Cell Arch. 2020 Aug 4;20:3155–9. doi.org/10.35124/bca.2020.20.S1.3155.
6.    Jing Z. Feng H. Studies on the Molecular Docking and Amino Acid Residues Involving in Recognition of Substrate in Proline Iminopeptidase by Site-Directed Mutagenesis. Protein J. 2015 Jun;34(3):173–80. doi.org/10.1007/s10930-015-9611-4.
7.    Kharisma V. Widodo N. Nugraha A. A Vaccine Candidate of ZIKA Virus (ZIKV) from Polyvalent Conserved B-Cell Epitope on Viral Glycoprotein: In Silico Approach. Biochem Cell Arch. 2020 Aug 4;20:2785–93. doi.org/10.35124/bca.2020.20.S1.2785.
8.    Abbas HA. Serry FM. EL-Masry EM. Synergic interaction between antibiotics and the artificial sweeteners xylitol and sorbitol against Pseudomonas aeruginosa biofilms. 2(4):3.
9.    Nassar SA. Mohamed AM. Sedky D. EL-Shemy A. Oral and Intraperitoneal Administration of Β-Glucan and Its Immunomodulatory Effect Against Staphylococcus Aureus Infection In Rats. Int J Pharm Phytopharm Res. 2018;8(2):8.
10.    Neun BW. Cedrone E. Potter TM. Crist RM. Dobrovolskaia MA. Detection of Beta-Glucan Contamination in Nanotechnology-Based Formulations. Molecules. 2020 Jul 24;25(15):3367. doi.org/10.3390/molecules25153367.
11.    Anugraheni I. Andarini S. Handayani D. Wihastuti TA. Black yeast beta glucan for insulin resistance prevention through IL-33, ST2 and leptin Level: An In vivo study of an obesity model using Sprague dawley rats. Res J Pharm Technol. 2020;13(12):6077–80. doi.org/10.5958/0974-360X.2020.01059.8.
12.    Chotigavin N. Sriphochanart W. Yaiyen S. Kudan S. Increasing the Production of β-Glucan from Saccharomyces carlsbergensis RU01 by Using Tannic Acid. Appl Biochem Biotechnol. 2021 Aug;193(8):2591–601. doi.org/10.1007/s12010-021-03553-5.
13.    S. M. X. F. 1,3-Beta-Glucans: Drug Delivery and Pharmacology. In The Complex World of Polysaccharides; Karunaratne, D. N., Ed.; InTech, 2012. https://doi.org/10.5772/50363.
14.    Saini HS. Barragán-Huerta BE. Lebrón-Paler A. Pemberton JE, Vázquez RR. Burns AM. et al. Efficient Purification of the Biosurfactant Viscosin from Pseudomonas libanensis Strain M9-3 and Its Physicochemical and Biological Properties. J Nat Prod. 2008 Jun;71(6):1011–5. doi.org/10.1021/np800069u.
15.    Khokra SL. Parashar B. Dhamija HK. Bala M. Immunomodulators: Immune System Modifiers. 2012;6.
16.    Al-sahlany STG. Altemimi AB. Al-Manhel AJA. Niamah AK. Lakhssassi N. Ibrahim SA. Purification of Bioactive Peptide with Antimicrobial Properties Produced by Saccharomyces cerevisiae. 2020;11.
17.    Bush K. Jacoby GA. Updated Functional Classification of β-Lactamases. Antimicrob Agents Chemother. 2010 Mar;54(3):969–76. doi.org/10.1128/AAC.01009-09.
18.    Naimah AK. Al-Manhel AJA. Al-Shawi MJ. Isolation, Purification and Characterization of Antimicrobial Peptides Produced from Saccharomyces boulardii. Int J Pept Res Ther. 2018 Sep;24(3):455–61. doi.org/10.1007/s10989-017-9632-2.
19.    Deurenberg RH. Stobberingh EE. The evolution of Staphylococcus aureus. Infect Genet Evol. 2008 Dec;8(6):747–63. doi.org/10.1016/j.meegid.2008.07.007.
20.    Ramalingam AJ. History of Antibiotics and Evolution of Resistance. Res J Pharm Technol. 2015;8(12):1719. doi.org/10.5958/0974-360X.2015.00309.1.
21.    Sreeja MK. Gowrishankar NL. Adisha S. Divya KC. Antibiotic resistance-reasons and the most common resistant pathogens - A review. Res J Pharm Technol. 2017;10(6):1886. doi.org/10.5958/0974-360X.2017.00331.6.
22.    Selvan SR. Ganapathy D. Efficacy of fifth generation cephalosporins against methicillin-resistant Staphylococcus aureus -A review. Res J Pharm Technol. 2016;9(10):1815. doi.org/10.5958/0974-360X.2016.00369.3.
23.    Egorov A. Rubtsova M. Grigorenko V. Uporov I. Veselovsky A. The Role of the Ω-Loop in Regulation of the Catalytic Activity of TEM-Type β-Lactamases. Biomolecules. 2019 Dec 11;9(12):854. doi.org/10.3390/biom9120854.
24.    Palzkill T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci. 2018 Feb 23;5:16. doi.org/10.3389/fmolb.2018.00016.
25.    Thiruvengadam S. Moganalaxmi R. Narmadha V. Sowndariya T. Romauld SI. Incidence, Prevelance and Management of Methicillin-Resistant Staphylococcus aureus in Chennai. Res J Pharm Technol. 2020;13(2):815. doi.org/10.5958/0974-360X.2020.00153.5.
26.    Janardhanan J. Bouley R. Martínez-Caballero S. Peng Z. Batuecas-Mordillo M. Meisel JE. et al. The Quinazolinone Allosteric Inhibitor of PBP 2a Synergizes with Piperacillin and Tazobactam against Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother [Internet]. 2019 May [cited 2021 Jul 9];63(5). Available from: https://journals.asm.org/doi/10.1128/AAC.02637-18. doi.org/10.1128/AAC.02637-18.
27.    Lahiri SD. Johnstone MR. Ross PL. McLaughlin RE. Olivier NB. Alm RA. Avibactam and Class C β-Lactamases: Mechanism of Inhibition, Conservation of the Binding Pocket, and Implications for Resistance. Antimicrob Agents Chemother. 2014 Oct;58(10):5704–13. doi.org/10.1128/AAC.03057-14.
28.    Syaban MFR. Rachman HA. Arrahman AD. Hudayana N. Purna J. Pratama FA. Allium sativum as Antimalaria Agent via Falciapin Protease-2 Inhibitor Mechanism: Molecular Docking Perspective. 2021;02(1):6.
29.    Rahman PA. Syaban MFR. Anoraga SG. Sabila FL. Molecular Docking Analysis from Bryophyllum pinnatum Compound as A COVID-19 Cytokine Storm Therapy. Open Access Maced J Med Sci. 2022;10:779–84. doi.org/10.3889/oamjms.2022.8412.
30.    Yueniwati Y, Syaban MF, Faratisha IF, Yunita KC, Putra GF, Kurniawan DB, et al. Molecular docking approach of natural compound from herbal medicine in java against severe acute respiratory syndrome coronavirus-2 receptor. Open Access Maced J Med Sci. 2021;9:1181-6. doi.org/10.3889/oamjms.2021.6963.
31.    Meenakshi KN. Sivakumar M. Srikanth J. Applications of molecular docking and virtual screening for phytoconstituents to identify cognition enhancer activity. Res J Pharm Technol. 2020;13(9):4285. doi.org/10.5958/0974-360X.2020.00757.X.
32.    Yueniwati Y. Syaban MFR. Erwan NE. Putra GFA. Krisnayana AD. Molecular Docking Analysis of Ficus religiosa Active Compound with Anti-Inflammatory Activity by Targeting Tumour Necrosis Factor Alpha and Vascular Endothelial Growth Factor Receptor in Diabetic Wound Healing. Open Access Maced J Med Sci. 2021;9:1031–6. doi.org/10.3889/oamjms.2021.7068.
33.    Li Y. Wang Z. Wei Q. Luo M. Huang G. Sumer BD. et al. Non-covalent interactions in controlling pH-responsive behaviors of self-assembled nanosystems. Polym Chem. 2016;7(38):5949–56. doi.org/10.1039/C6PY01104G.
34.    Panigrahi N. Ganguly S. Panda J. Synthesis, Antimicrobial Evaluation and Molecular Docking Studies of Novel Oxazolidinone-Thiophene Chalcone Hybrid Derivatives. Res J Pharm Technol. 2018;11(12):5611. doi.org/10.5958/0974-360X.2018.01019.3.
35.    Chamidah A. Hardoko. Prihanto AA. Antibacterial activities of β-glucan (laminaran) against gram-negative and gram-positive bacteria. In Chengdu, China; 2017 [cited 2021 May 30]. p. 020011. Available from: http://aip.scitation.org/doi/abs/10.1063/1.4983422

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available