Author(s):
Tiara Mega Kusuma, Akhmad Kharis Nugroho, Ronny Martien, Madarina Julia
Email(s):
a.k.nugroho@ugm.ac.id
DOI:
10.52711/0974-360X.2022.00396
Address:
Tiara Mega Kusuma1,2, Akhmad Kharis Nugroho3*, Ronny Martien3, Madarina Julia4
1Doctoral Program in Pharmaceutical Science, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia.
2Department of Pharmaceutics, Faculty of Health Science, Universitas Muhammadiyah Magelang, Indonesia.
3Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
4Department of Child Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
*Corresponding Author
Published In:
Volume - 15,
Issue - 5,
Year - 2022
ABSTRACT:
Recombinant human erythropoietin (rh-Epo) is a glycoprotein hormone has not been per-oral due to low bioavailability. Double emulsion formula is a widely applied drug delivery system to improve the permeability of hydrophilic drugs. Nevertheless, thermodynamics and enzymatic stability are still being discussed. This review article aims to see how much possibilities rh-Epo is delivered orally using a double emulsion formula. This review article reviews the weaknesses, strengths, opportunities, threats, and strategies for developing formulas for administering protein-based drugs in the form of a double emulsion. Based on the review, the double emulsion can be potential applied by double emulsion which is obtained a permeation enhancer and protease inhibitors addition, the use of non-ionic surfactants, and medium-chain triglyceride, as well as reducing droplet size and shifting charge droplet.
Cite this article:
Tiara Mega Kusuma, Akhmad Kharis Nugroho, Ronny Martien, Madarina Julia. A Review of Potential Double Emulsion Formula for Recombinant Human Erythropoietin Per Oral. Research Journal of Pharmacy and Technology. 2022; 15(5):2381-8. doi: 10.52711/0974-360X.2022.00396
Cite(Electronic):
Tiara Mega Kusuma, Akhmad Kharis Nugroho, Ronny Martien, Madarina Julia. A Review of Potential Double Emulsion Formula for Recombinant Human Erythropoietin Per Oral. Research Journal of Pharmacy and Technology. 2022; 15(5):2381-8. doi: 10.52711/0974-360X.2022.00396 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-5-78
REFERENCES:
1. Camilleri M, Madsen K, Spiller R, Van Meerveld BG, Verne GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 2012;24(6):503-512. doi:10.1111/j.1365-2982.2012.01921.x
2. Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev. 2016;106:256-276. doi:10.1016/j.addr.2016.07.007
3. Nahar N, Dey SK, Shahidullah M. Effect of Oral Erythropoietin in Prevention of Anemia of Prematurity. Bangladesh J Child Heal. 2017;41(2):101-109.
4. Pereira R, Costa E, Gonçalves M, et al. Neutrophil and monocyte activation in chronic kidney disease patients under hemodialysis and its relationship with resistance to recombinant human erythropoietin and to the hemodialysis procedure. Hemodial Int. 2010;14(3):295-301. doi:10.1111/j.1542-4758.2010.00450.x
5. Nayak JA, Anand I, Patel C. Novel Approaches in Erythropoietin: A Review. Res J Pharmacol Pharmacodyn. 2010;2(2):103-110.
6. Sullivan PS, Hanson DL, Richardson JT, Brooks JT. Trends in the Treatment of Anemia Using Recombinant Human Erythropoietin in Patients with HIV Infection. Open AIDS J. 2012;5(1):113-118. doi:10.2174/1874613601105010113
7. Hedley BD, Allan AL, Xenocostas A. The role of erythropoietin and erythropoiesis-stimulating agents in tumor progression. Clin Cancer Res. 2011;17(20):6373-6380. doi:10.1158/1078-0432.CCR-10-2577
8. Moussaoui N, Hammadi L, Boudjenane NE, Denine RR. Development of multiple W/O/W emulsions used in pharmaceutical field: effect of additives and insulin on physicochemical and rheological stability of emulsions. Colloid Polym Sci. 2017;295(1):125-133. doi:10.1007/s00396-016-3989-1
9. Silva-Cunha A, Grossiord JL, Puisieux F, Seiller M. W/O/W multiple emulsions of insulin containing a protease inhibitor and an absorption enhancer: Preparation, characterization and determination of stability towards proteases in vitro. Int J Pharm. 1997;158(1):79-89. doi:10.1016/S0378-5173(97)00249-4
10. Cournarie F, Rosilio V, Chéron M, et al. Improved formulation of W/O/W multiple emulsion for insulin encapsulation. Influence of the chemical structure of insulin. Colloid Polym Sci. 2004;282(6):562-568. doi:10.1007/s00396-003-0960-8
11. Silva-Cunha A, Chéron M, Grossiord JL, Puisieux F, Seiller M. W/O/W multiple emulsions of insulin containing a protease inhibitor and an absorption enhancer: Biological activity after oral administration to normal and diabetic rats. Int J Pharm. 1998;169(1):33-44. doi:10.1016/S0378-5173(98)00102-1
12. Cournarie F, Savelli MP, Rosilio V, et al. Insulin-loaded W/O/W multiple emulsions: Comparison of the performances of systems prepared with medium-chain-triglycerides and fish oil. Eur J Pharm Biopharm. 2004;58(3):477-482. doi:10.1016/j.ejpb.2004.03.024
13. Shima M, Tanaka M, Fujii T, et al. Oral administration of insulin included in fine W/O/W emulsions to rats. Food Hydrocoll. 2006;20(4):523-531. doi:10.1016/j.foodhyd.2005.05.002
14. Qi X, Wang L, Zhu J. Water-In-Oil-In-Water Double Emulsions: An Excellent Delivery System For Improving The Oral Bioavailability of Pidotimid in Rats. J Pharm Sci. 2011;100(6):2203-2211. doi:10.1002/jps
15. Santos MG, Bozza FT, Thomazini M, Favaro-Trindade CS. Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chem. 2015;171:32-39. doi:10.1016/j.foodchem.2014.08.093
16. Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release. 2009;133(2):90-95. doi:10.1016/j.jconrel.2008.09.073
17. Dogru ST, Çalis S, Öner F. Oral multiple w/o/w emulsion formulation of a peptide salmon calcitonin: In vitro-in vivo evaluation. J Clin Pharm Ther. 2000;25(6):435-443. doi:10.1046/j.1365-2710.2000.00306.x
18. Dalpiaz A, Sacchetti F, Baldisserotto A, et al. Application of the “in-oil nanoprecipitation” method in the encapsulation of hydrophilic drugs in PLGA nanoparticles. J Drug Deliv Sci Technol. 2016;32:283-290. doi:10.1016/j.jddst.2015.07.020
19. Iqbal M, Zafar N, Fessi H, Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm. 2015;496(2):173-190. doi:10.1016/j.ijpharm.2015.10.057
20. Bonnet M, Cansell M, Berkaoui A, Ropers MH, Anton M, Leal-Calderon F. Release rate profiles of magnesium from multiple W/O/W emulsions. Food Hydrocoll. 2009;23(1):92-101. doi:10.1016/j.foodhyd.2007.11.016
21. Yazan Y, Seiller M, Puisieux F. Multiple Emulsions. Vol 132.; 1993. doi:10.1016/s0140-6736(65)90816-0
22. Zhang Q, He N, Zhang L, et al. The In Vitro and In Vivo Study on Self-Nanoemulsifying Drug Delivery System ( SNEDDS ) Based on Insulin-Phospholipid Complex. J Biomed Nanotechnol. 2012:90-97. doi:10.1166/jbn.2012.1371
23. Li P, Nielsen HM, Müllertz A. Impact of Lipid-Based Drug Delivery Systems on the Transport and Uptake of Insulin Across Caco-2 Cell Monolayers. J Pharm Sci. 2016. doi:10.1016/j.xphs.2016.01.006
24. Karamanidou T, Karidi K, Bourganis V, Kontonikola K, Kammona O, Kiparissides C. Effective incorporation of insulin in mucus permeating self-nanoemulsifying drug delivery systems. Eur J Pharm Biopharm. 2015;97:223-229. doi:10.1016/j.ejpb.2015.04.013
25. Saudagar R., Vainshanav S. Pharmaceutical Nano emulsion as a Rational Carrier for Drug Delivery. Res J Pharm Technol. 2016;9(3):298-304.
26. K US, M A, Sahithi GK, et al. Nanoemulsions-Approaching Thermodynamic Stability. Res J Pharm Technol. 2010;3(2):319-326.
27. Chemmunique. The HLB System: A Time-Saving Guide to Emulsifier Selection. Vol 37. ICI Americas Inc.; 1980. doi:10.1002/jsfa.6444
28. Garti N, Bisperink C. Double emulsions: Progress and applications. Curr Opin Colloid Interface Sci. 1998;3(6):657-667. doi:10.1016/S1359-0294(98)80096-4
29. Matsuzawa A, Morishita M, Takayama K, Nagai T. Absorption of insulin using water-in-oil-in-water emulsion from an enteral loop in rats. Biol Pharm Bull. 1995;18(12):1718-1723. http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/.
30. Moghassemi S, Parnian E, Hakamivala A, et al. Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes. Mater Sci Eng C. 2015;46(January 2019):333-340. doi:10.1016/j.msec.2014.10.070
31. Weiss J, Muschiolik G. Factors affecting the droplet size of water-in-oil emulsions (W/O) and the oil globule size in Water-in-oil-in-water emulsions (W/O/W). J Dispers Sci Technol. 2007;28(5):703-716. doi:10.1080/01932690701341819
32. Onuki Y, Morishita M, Takayama K. Formulation optimization of water-in-oil-water multiple emulsion for intestinal insulin delivery. J Control Release. 2004;97(1):91-99. doi:10.1016/j.jconrel.2004.03.010
33. Chen J, Liu C, Shan W, Xiao Z, Guo H, Huang Y. Enhanced stability of oral insulin in targeted peptide ligand trimethyl chitosan nanoparticles against trypsin. J Microencapsul. 2015;32(7):632-641. doi:10.3109/02652048.2015.1065920
34. Pechenkin MA, Balabushevich NG, Zorov IN, et al. Use of protease inhibitors in composite polyelectrolyte microparticles in order to increase the bioavailability of perorally administered encapsulated proteins. Pharm Chem J. 2013;47(1):62-69. doi:10.1007/s11094-013-0898-1
35. Jose S, Fangueiro JF, Smitha J, et al. Predictive modeling of insulin release profile from cross-linked chitosan microspheres. Eur J Med Chem. 2013;60:249-253. doi:10.1016/j.ejmech.2012.12.011
36. Wu W, Niu M, Lu Y, Hovgaard L. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation. Int J Nanomedicine. 2011:1155. doi:10.2147/ijn.s19917
37. Jelkmann W. Efficacy of recombinant erythropoietins : is there unity of international units ? Nephrol Dial Transpl. 2009;24:1366-1368. doi:10.1093/ndt/gfp058
38. Teh SH, Fong MY, Mohamed Z. Expression and analysis of the glycosylation properties of recombinant human erythropoietin expressed in Pichia pastoris. Genet Mol Biol. 2011;34(3):464-470. doi:10.1590/S1415-47572011005000022
39. Fortuna A, Alves G, Falcão A, Soares-Da-Silva P. Evaluation of the permeability and P-glycoprotein efflux of carbamazepine and several derivatives across mouse small intestine by the Ussing chamber technique. Epilepsia. 2012;53(3):529-538. doi:10.1111/j.1528-1167.2012.03409.x
40. Sonaje K, Lin KJ, Tseng MT, et al. Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials. 2011;32(33):8712-8721. doi:10.1016/j.biomaterials.2011.07.086
41. Crater JS, Carrier RL. Barrier Properties of Gastrointestinal Mucus to Nanoparticle Transport. Macromol Biosci. 2010;10(12):1473-1483. doi:10.1002/mabi.201000137
42. Pramod S, Dhiraj R, Prerna C. A Novel Prodrug Approach in Colonic Drug Delivery System. Asian J Res Chem. 2011;4(8):1197-1201.
43. Jiang J, Tian F, Cai Y, Qian X, Costello CE, Ying W. Site-specific qualitative and quantitative analysis of N- and O-glycoforms in recombinant human erythropoietin. Anal Bioanal Chem. 2014;406(25):6265-6274. doi:10.1016/j.physbeh.2017.03.040
44. Chang S, Kim H, Kim C. Analysis of the Structure and Stability of Erythropoietin by pH and Temperature Changes using Various LC / MS. Bull Korean Chem Soc. 2013;34(9):2663-2670.
45. Lokhande SS. Recent Trends in Multiple Emulsion-A Comprehensive Review. Asian J Res Pharm Sci. 2019;9(3):201-208.
46. Shivhare UD, Chopkar PT, Bhusari KP, Mathur VB, Ramteke VI. Effect of Formulation Variables on Pharmacotechnical Properties of Carvedilol Self-Emulsifying Drug Delivery System. Res J Pharm Dos Forms Technol. 2009;1(3):275-279.
47. Jana U, Pal S, Mohanta G., Manna P., Manavalan R. Nanoparticles: A Potential Approach for Drug Delivery. Res J Pharm Technol. 2011;4(7):1016-1019.
48. Kader NSA, Ansari N, Bharti R, et al. Novel Approaches for Colloidal Drug Delivery System: Nanoemulsion. Res J Pharm Dos Forms Technol. 2018;10(4):253-258.
49. Yadav S, PS K, YN G, SD G. Microemulsion: A Review. Res J Pharm Technol. 2009;2(3):441-448.
50. Sahoo CK, Rao SRM, Sudhakar M, Hema. Challenges of Micro-emulsion as a Novel Carrier for Drug Delivery. Res J Pharm Dos Forms Technol. 2019;11(3):227-234.
51. Maitani Y, Hazama.Megumi, Tojo Y, Shimoda N, Nagai T. Oral Administration of Recombinant Human Erythropoietin in Liposomes in Rats : Influence of Lipid Composition and Size of Liposomes on Bioavailability. J Pharm Sci Herb Technol. 1996;85(4):0-5.
52. Maitani Y, Moriya H, Shimoda N, Takayama K, Nagai T. Distribution characteristics of entrapped recombinant human erythropoietin in liposomes and its intestinal absorption in rats. Int J Pharm. 1999;185(1):13-22. doi:10.1016/S0378-5173(99)00143-X
53. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate / Chitosan Nanoparticles are Effective for Oral Insulin Delivery. Pharm Res. 2007;24(12):2198-2206. doi:10.1007/s11095-007-9367-4
54. Lopes MA, Abrahim BA, Cabral LM, et al. Intestinal absorption of insulin nanoparticles : Contribution of M cells. Nanomedicine Nanotechnology, Biol Med. 2014. doi:10.1016/j.nano.2014.02.014
55. Jeong JH, Kang SH, Kim JH, et al. Protective effects of poly(lactic-co-glycolic acid) nanoparticles loaded with erythropoietin stabilized by sodium cholate against glutamate-induced neurotoxicity. J Nanosci Nanotechnol. 2014;14(11):8365-8371. doi:10.1166/jnn.2014.9927
56. Winarti L, Martien R, Hakim L, Programme P, Pharmacy F, Mada UG. An Experimental Design of SNEDDS Template Loaded with Bovine Serum Albumin and Optimization Using D-Optimal Digital Repository Jember. Int J Pharm Clin Res. 2016;8(5):425-432.
57. Rao SVR, Shao J. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs. I. Formulation development. Int J Pharm. 2008;362(1-2):2-9. doi:10.1016/j.ijpharm.2008.05.018
58. Ã NV, Yoshimitsu J, Ito Y, Shibata N, Takada K. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials. 2005;26:7154-7163. doi:10.1016/j.biomaterials.2005.05.012
59. Heiker JT, Klöting N, Kovacs P, et al. Vaspin inhibits kallikrein 7 by serpin mechanism. Cell Mol Life Sci. 2013;70(14):2569-2583. doi:10.1007/s00018-013-1258-8
60. Zhu S, Chen S, Gao Y, et al. Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec). Drug Deliv. 2016;23(6):1980-1991. doi:10.3109/10717544.2015.1043472
61. Yousaf AM, Kim DW, Oh YK, Yong CS, Kim JO, Choi HG. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: Physicochemical characterization and in vivo investigation. Int J Nanomedicine. 2015;10:1819-1830. doi:10.2147/IJN.S78895
62. Friedl H, Dünnhaupt S, Hintzen F, et al. Development and evaluation of a novel mucus diffusion test system approved by self-nanoemulsifying drug delivery Systems. J Pharm Sci. 2013;102(12):4406-4413. doi:10.1002/jps.23757
63. Suchaoin W, Pereira de Sousa I, Netsomboon K, Lam HT, Laffleur F, Bernkop-Schnürch A. Development and in vitro evaluation of zeta potential changing self-emulsifying drug delivery systems for enhanced mucus permeation. Int J Pharm. 2016;510(1):255-262. doi:10.1016/j.ijpharm.2016.06.045
64. Parveen R, Baboota S, Ali J, Ahuja A, Ahmad S. Stability studies of silymarin nanoemulsion containing Tween 80 as a surfactant. J Pharm Bioallied Sci. 2015;7(4):321-324.
65. Daaou M, Bendedouch D. Water pH and surfactant addition effects on the stability of an Algerian crude oil emulsion. J Saudi Chem Soc. 2012;16(3):333-337. doi:10.1016/j.jscs.2011.05.015
66. Drelich A, Gomez F, Clausse D, Pezron I. Evolution of water-in-oil emulsions stabilized with solid particles. Influence of added emulsifier. Colloids Surfaces A Physicochem Eng Asp. 2010;365(1-3):171-177. doi:10.1016/j.colsurfa.2010.01.042
67. Nesterenko A, Drelich A, Lu H, Clausse D, Pezron I. Influence of a mixed particle/surfactant emulsifier system on water-in-oil emulsion stability. Colloids Surfaces A Physicochem Eng Asp. 2014;457(1):49-57. doi:10.1016/j.colsurfa.2014.05.044
68. Zhang X, Dong W, Cheng H, et al. Modulating intestinal mucus barrier for nanoparticles penetration by surfactants. Asian J Pharm Sci. 2019;14(5):543-551. doi:10.1016/j.ajps.2018.09.002
69. Prüfert F, Fischer F, Leichner C, Zaichik S, Bernkop-Schnürch A. Development and In Vitro Evaluation of Stearic Acid Phosphotyrosine Amide as New Excipient for Zeta Potential Changing Self-Emulsifying Drug Delivery Systems. Pharm Res. 2020;37(4). doi:10.1007/s11095-020-02802-2
70. Nazir I, Fürst A, Lupo N, Hupfauf A, Gust R, Bernkop-Schnürch A. Zeta potential changing self-emulsifying drug delivery systems: A promising strategy to sequentially overcome mucus and epithelial barrier. Eur J Pharm Biopharm. 2019;144(July):40-49. doi:10.1016/j.ejpb.2019.09.007
71. Sharifi F, Nazir I, Asim MH, et al. Zeta potential changing self-emulsifying drug delivery systems utilizing a novel Janus-headed surfactant: A promising strategy for enhanced mucus permeation. J Mol Liq. 2019;291(July). doi:10.1016/j.molliq.2019.111285
72. Maaz A, Trefi S, Haroun M, Abdelwahed W. Preparation of Gatifloxacin Microparticles by Double Emulsification w/o/w method for Ocular Drug Delivery. Res J Pharm Technol. 2017;10(5):1277-1288.
73. Zhao Y, Wang C, Chow AH., et al. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: Formulation and bioavailability studies. Int J Pharm. 2010;383(1-2):170-177.