Author(s):
Preeta Bose, Pintu Kr De, Muniraj Bhattacharya, Abhishek Jana
Email(s):
preeta.bose@jisuniversity.ac.in , pintu.de@jisuniversity.ac.in , muniraj2k20@gmail.com , abhishek.aj98@gmail.com
DOI:
10.52711/0974-360X.2022.00412
Address:
Preeta Bose, Pintu Kr De, Muniraj Bhattacharya, Abhishek Jana
Department of Pharmaceutical Technology, JIS University, Kolkata- 700109.
*Corresponding Author
Published In:
Volume - 15,
Issue - 6,
Year - 2022
ABSTRACT:
Paclitaxel (PTX) obtained from the bark of Taxus brevifolia (Pacific yew tree) is a well-known potent drug used for treatment of breast, lung and ovarian cancer. PTX is stated to be a novel antimicrotubule agent. PTX acts by assembling the microtubule from tubulin dimmers and stabilizing of microtubules by prevention of polymerization. Thus it affects the cell division of the cancer cells by interrupting the spindle formation. PTX on application in cancer treatment it shows to have low aqueous solubility use of vehicles like Cremophore EL and ethanol, which on application shows hypersensitivity reaction. So to reduce the toxicity due to these vehicles three main dosage forms are seen to be developed for application of PTX in chemotherapy by researchers throughout the world. Namely; Nano-Particle Approaches, Liposomal approach, Solid Dispersion approach. Nanoparticles are utilized for purposes like decreasing toxicity and minimizing adverse effects of drug molecules and enhancing drug release. Liposomes are capable of containing more amount of PTX and are capable of long term stability, toxicity reduction when compared to other dosage form. Solid dispersions are more effective compared to other methods of particle size reduction to improve the drug solubility. So it can be stated that developing dosage forms like these for reduction of toxicity and efficacious application of PTX in chemotherapy is important.
Cite this article:
Preeta Bose, Pintu Kr De, Muniraj Bhattacharya, Abhishek Jana. A Study on Improving Bioavailability of Paclitaxel through different Novel Drug Delivery Approaches. Research Journal of Pharmacy and Technology. 2022; 15(6):2470-6. doi: 10.52711/0974-360X.2022.00412
Cite(Electronic):
Preeta Bose, Pintu Kr De, Muniraj Bhattacharya, Abhishek Jana. A Study on Improving Bioavailability of Paclitaxel through different Novel Drug Delivery Approaches. Research Journal of Pharmacy and Technology. 2022; 15(6):2470-6. doi: 10.52711/0974-360X.2022.00412 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-6-16
REFERENCE:
1. Hu L, Tang X, Cui F. Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol. 2004;(56):1527–1535. doi: 10.1211/0022357044959.
2. Schellens JH, Malingre MM, Kruijtzer CM, Bardelmeijer HA, Tellingen O, Schinkel AH. Modulation of oral bioavailability of anticancer drugs from mouse to man. Eur J Pharm Sci. 2002;(2):103–110. DOI: 10.1016/s0928-0987(00)00153-6.
3. Mehnert M, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;(47):165– 196. DOI: 10.1016/s0169-409x(01)00105-3.
4. Baek JS, Shin SC, Cho CW. Effect of lipid on physicochemical properties of solid lipid nanoparticle of paclitaxel. J Pharm Investig. 2012;(42):279–283. DOI:10.1007/s40005-012-0038-z
5. Wissing SA, Lippacher A, Muller RH. Inverstigations on the occlusive properties of solid lipid nanoparticles (SLN). J Cosmet Sci. 2001(52):313–324.
6. Ganguly A, Cabral F. New insights into mechanisms of resistance to microtubule inhibitors. Biochim Biophys Acta-Rev Cancer. 2011; 18(16):164–171.doi: 10.1016/j.bbcan.2011.06.001
7. Fararh KM, Shimizu Y, Shiina T, Nikami H, Ghanem MM, Takewaki T. Thymoquinone reduces hepaticglucose production in diabetic hamsters. Res Vet Sci. 2005; (79):219–223. DOI: 10.1016/j.rvsc.2005.01.001
8. Banerjee S, Padhye S, Azmi A, Wang Z, Philip PA, Kucuk O, Sarkar FH, Mohammad RM. Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr Cancer .2010;(62):938–946. DOI: 10.1080/01635581.2010.509832
9. Banerjee S, Kaseb AO, Wang Z, Kong D, Mohammad M, Padhye S, Sarkar FH, Mohammad RM. Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res. 2009;(69):5575–5583. DOI: 10.1158/0008-5472.CAN-08-4235.
10. Attoub S, Sperandio O, Raza H, Arafat K, Al-Salam S, Al Sultan MA, Al Safi M, Takahashi T, Adem A . Thymoquinone as an anticancer agent: evidence from inhibition ofcancer cells viability and invasion in vitro and tumor growth in vivo. Fundam Clin Pharmacol. 2012;(27):1–13. DOI: 10.1111/j.1472-8206.2012.01056.x
11. Chen M, Shao Z, and Chen X. Paclitaxel-loaded silk fibroin nanospheres. Journal of Biomedical Materials Research. 2012; 100(1) :203–210. Doi.org/10.1002/jbm.a.33265
12. Deepak T, Michel D, Yashwant P. Nanoparticulate Drug Delivery Systems. Informa Healthcare USA, New York, NY, USA.2007.
13. Zhao Z, Li Y, Zhang Y. Development of silk fibroin modified poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) nanoparticles in supercritical CO2. Powder Technology.2014;268 (1) :118–125. Doi 10.1016/j.powtec.2014.07.029
14. Baek JS, Kim BS, Puri A, Kumar K, Cho CW. Stability of paclitaxel-loaded solid lipid nanoparticles in the presence of 2-hydoxypropyl-b-cyclodextrin. Arch. Pharm. Res.2016;(39):785–793. DOI: 10.1007/s12272-016-0753-5
15. Soni P, Kaur J, Tikoo K. Dual drug-loaded paclitaxel–thymoquinone nanoparticles for effective breast cancer therapy.J Nanopart Res.2015;17(1):18-19. DOI:10.1007/s11051-014-2821-4
16. Zhao Z, Li Y, Zhang Y. Preparation and Characterization of Paclitaxel Loaded SF/PLLA-PEG-PLLA Nanoparticles via Solution-Enhanced Dispersion by Supercritical CO2. J Nanomaterials. 2015;1-7 . doi.org/10.1155/2015/913254
17. Hong SS, Choi JY, Kim JO, Lee MK, Kim SH and LimSJ. Development of paclitaxel-loaded liposomal nanocarrier stabilized by triglyceride incorporation. International Journal of Nanomedicine. 2016; (11): 4465–4477. doi: 10.2147/IJN.S113723.
18. Yang T, Cui FD, Choi MK, Lin H, Chung SJ, Koo C , Kim DD. Liposome Formulation of Paclitaxel with Enhanced Solubility and Stability. Drug Delivery. 2007; (14)5, 301-308, DOI: 10.1080/10717540601098799
19. Shigehiro T, Kasai T, Murakami M, Sekhar S.C, Tominaga Y, Okada M, Kudoh T, Mizutani A, Murakami H, Salomon DS, Mikuni K, Mandai T, Hamada H, Seno M. Efficient Drug Delivery of Paclitaxel Glycoside: A Novel Solubility Gradient Encapsulation into Liposomes Coupled with Immunoliposomes Preparation. 2014;9(9):107976. doi: 10.1371/journal.pone.0107976
20. Nguyen TL, Nguyen TH, Nguyen DH. Development and In Vitro Evaluation of Liposomes Using Soy Lecithin to Encapsulate Paclitaxel.2017; (1)7. doi.org/10.1155/2017/8234712
21. Hong S S, Choi J Y, Kim J O, Lee M K, Kim S H, and Lim S J. Development of Paclitaxel-loaded liposomal nanocarrier stabilized by triglyceride incorporation. International Journal of Nanomedicine. 2016; (11): 4465–4477. Doi: 10.2147/IJN.S113723.
22. Yang T, Cui F D, Choi M K, Lin H, Chung S J, Shim C K , Kim D D. Liposome Formulation of Paclitaxel with Enhanced Solubility and Stability, Drug Delivery.2007;(14) 5:301-308.DOI: 10.1080/10717540601098799 .
23. Sharma N K., Kumar V. Liposomal Paclitaxel: Recent Trends and Future Perspectives. Int. J. Pharm. 2015; 31(1) :205-211.
24. Banerjee S, Padhye S, Azmi A, Wan PA, Philip Z, Kucuk O, Sarkar FH, Mohammad RM. Review on Molecular and Therapeutic Potential of Thymoquinone in Cancer, Nutrition and Cancer, 2010;62(7) :938-946.DOI: 10.1080/01635581.2010.509832
25. Attoub S , Sperandio O , Raza H , Arafat K, Al‐Salam S, Al Sultan MA , Al Safi M , Takahashi T, Adem A. Thymoquinone as an anticancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. 2013;27(5):557-69. doi.org/10.1111/j.1472-8206.2012.01056.x
26. Batlle, J.F., Arranz, E.E., de Castro Carpeño, J. Oral chemotherapy: potential benefits and limitations. Rev Oncol. 2004; (6) :335–340. https://doi.org/10.1007/BF02710062.
27. Rao VM, Stella VJ. When can cyclodextrins be considered for solubilization purposes. J Pharm Sci. 2003;92(5):927-32. doi: 10.1002/jps.10341.
28. Dahan A, Beig A, Lindley D, Miller JM. The solubility permeability inter play and oral drug formulation design: two heads are better than one. Adv Drug Deliv Rev. 2016;10(1):99–107. DOI: 10.1016/j.addr.2016.04.018
29. Dahan A, Miller JM. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 2012;14(2):244-51.doi:10.1208/s12248-012-9337-6
30. Green MC, Buzdar AU, Smith T, Ibrahim NK, Valero V, Rosales MF. Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J Clin Oncol Off J Am Soc Clin Oncol. 2005; 23(25):5983–92. DOI: 10.1200/JCO.2005.06.232
31. Rowinsky EK, et al. Taxol: the first of the taxanes, an important new class of antitumor agents. Semin Oncol. 1992; 19(6):646.
32. Muddukrishna, B. S., Dengale, S. J., Shenoy, G. G., & Bhat, K. Preparation, solid state characterisation of Paclitaxel and Naringen Cocrystals with improved solubility. International Journal of Applied Pharmaceutics. 2016; 8(4): 32-37. doi.org/10.22159/ijap.2016v8i4.14251
33. P Kegade, A Gade, R Sawant, S Parkar. Liposomal drug delivery in Cancer. Asian J. Pharm. Res. 2020; 10(4):293-298. doi: 10.5958/2231-5691.2020.00050.7
34. Thalkari, Avinash B; Karwa, Pawan N; Zambare, Krushna K; Tour, Nagesh S, Chopane, Priyanka S. Research Journal of Pharmacognosy and Phytochemistry. 2019; 11(3): 123-128. DOI:10.5958/0975-4385.2019.00021.9
35. Stadnichenko A.V., Krasnopolsky Y.M., Yarnykh T.G.. Standardization of Extrusion Parameters during Liposomal Oxaliplatin Creation. Research J. Pharm. and Tech. 2017; 10(3): 785-788. doi: 10.5958/0974-360X.2017.00147.0
36. Dhande LB, Deshmukh MT, Khopade AN, Shete RV, Kunjir VV. A Review on Solubility Enhancement by Solid Dispersion Method. JDDT.2021;11(1):182-7. DOI :10.22270/jddt.v11i1.4489
37. Shinkar DM, Patil AN, Saudagar RB. Solubility Enhancement by Solid Dispersion. Asian J. Pharm. Tech. 2017; 7(2): 72-76. doi: 10.5958/2231-5713.2017.00011.3
38. Buralla KK, Parthasarathy V. Central Composite Design based Development and Validation of an RP-HPLC Method for Paclitaxel in Bulk and Pharmaceutical Dosage Form. Research J. Pharm. and Tech. 2020; 13(10):4895-4902. doi: 10.5958/0974-360X.2020.00861.6
39. Umamahesvari H. Fabrication and Character Study of the Anticancer Drug Paclitaxel (Taxol): PLGA nanoparticles - The benefaction for the modern therapeutic area. Research J. Pharm. and Tech. 2020; 13(1): 265-269. doi: 10.5958/0974-360X.2020.00054.2
40. Ahmed Syed I, Madhusudan Rao Y. Dendrimers Based Drug Delivery Systems. Research J. Pharm. and Tech. 2012; 5(3): 307-316.