Author(s):
Tarang R Bhatt, Dharmesh Golwala
Email(s):
tarang.bhatt@gmail.com
DOI:
10.52711/0974-360X.2022.00455
Address:
Tarang R Bhatt1*, Dharmesh Golwala2
1Research Scholar, Faculty of Pharmaceutical Science, C. U. Shah University, Wadhwan, Surendranagar, Gujarat, India.
2Shankersinh Vaghela Bapu, Institute of Pharmacy, Vasan, Gandhinagar, Gujarat, India.
*Corresponding Author
Published In:
Volume - 15,
Issue - 6,
Year - 2022
ABSTRACT:
The aim of the present study was to formulate different semi-solids dosage form for Timolol Maleate (0.5%) in oleaginous ointments, hydrocarbon gel and hydrogels and to study in-vitro comparison of flux and permeability into cornea of these semi-solids dosage form in comparison to ophthalmic solution using Franz diffusion cell. Objective of the study compare rate and extent of steady state flux in between semi-solids and solution of timolol maleate and obtain permeation co-efficient of all formulations from steady state flux using Fick’s first law of diffusion. An modified Franz diffusion cell consisting of 20 ml glass receptor along with a glass donor was for used for study and analysis of permeation was carried out using high performance liquid chromatography at time points 0,0.5,1,2,4,8,16 and 24 h. Results concluded that hydrogel formulation containing hydroxy propyl methyl cellulose as an gelling agent was found to have better flux and permeability than the reference solution formulation, while other two formulation containing paraffin base had less flux and permeability than reference solution formulation.
Cite this article:
Tarang R Bhatt, Dharmesh Golwala. In-Vitro Study on Permeation of different Semi-solid dosage forms of Timolol Maleate using Franz cell. Research Journal of Pharmacy and Technology. 2022; 15(6):2721-6. doi: 10.52711/0974-360X.2022.00455
Cite(Electronic):
Tarang R Bhatt, Dharmesh Golwala. In-Vitro Study on Permeation of different Semi-solid dosage forms of Timolol Maleate using Franz cell. Research Journal of Pharmacy and Technology. 2022; 15(6):2721-6. doi: 10.52711/0974-360X.2022.00455 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-6-59
REFERENCES:
1. Le Bourlais C, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems - Recent advances. Progress in Retinal and Eye Research. 1998. doi:10.1016/S1350-9462(97)00002-5
2. Shirasaki Y. Molecular design for enhancement of ocular penetration. Journal of Pharmaceutical Sciences. 2008. doi:10.1002/jps.21200
3. Kaur IP, Kanwar M. Ocular preparations: The formulation approach. Drug Development and Industrial Pharmacy. 2002. doi:10.1081/DDC-120003445
4. Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opinion on Drug Delivery. 2006. doi:10.1517/17425247.3.2.275
5. Xu X, Al-Ghabeish M, Rahman Z, et al. Formulation and process factors influencing product quality and in vitro performance of ophthalmic ointments. International Journal of Pharmaceutics. 2015. doi:10.1016/j.ijpharm.2015.07.066
6. Rylander NR, Vold SD. Cost Analysis of Glaucoma Medications. American Journal of Ophthalmology. 2008. doi:10.1016/j.ajo.2007.08.041
7. Schlenker MB, Trope GE, Buys YM. Comparison of United States and Canadian glaucoma medication costs and price change from 2006 to 2013. Journal of Ophthalmology. 2015. doi:10.1155/2015/547960
8. Zhao PY, Rahmathullah R, Stagg BC, et al. A Worldwide Price Comparison of Glaucoma Medications, Laser Trabeculoplasty, and Trabeculectomy Surgery. JAMA Ophthalmology. 2018. doi:10.1001/jamaophthalmol.2018.3672
9. Zhao PY, Rahmathullah R, Robin AL, Stein JD. Comparison of prices of glaucoma medications, laser trabeculoplasty, and incisional glaucoma surgery in 20 countries. Investigative Ophthalmology and Visual Science. 2017.
10. Yadav A, Patel V. Drug use in primary open angle glaucoma: A prospective study at a tertiary care teaching hospital. Indian Journal of Pharmacology. 2013. doi:10.4103/0253-7613.108279
11. Nayak B, Gupta S, Kumar G, Dada T, Gupta V, Sihota R. Socioeconomics of long-term glaucoma therapy in India. Indian Journal of Ophthalmology. 2015. doi:10.4103/0301-4738.151458
12. Zimmerman TJ, Kaufman HE. Timolol: Dose Response and Duration of Action. Archives of Ophthalmology. 1977. doi:10.1001/archopht.1977.04450040071009
13. Wilson RP, Kanal N, Spaeth GL. Timolol: Its Effectiveness in Different Types of Glaucoma. Ophthalmology. 1979. doi:10.1016/S0161-6420(79)35535-X
14. Coakes RL, Brubaker RF. The Mechanism of Timolol in Lowering Intraocular Pressure: In the Normal Eye. Archives of Ophthalmology. 1978. doi:10.1001/archopht.1978.03910060433007
15. Nelson WL, Fraunfelder FT, Sills JM, Arrowsmith JB, Kuritsky JN. Adverse respiratory and cardiovascular events attributed to timolol ophthalmic solution, 1978-1985. American Journal of Ophthalmology. 1986. doi:10.1016/0002-9394(86)90532-5
16. Andrés-Guerrero V, Vicario-de-la-Torre M, Molina-Martínez IT, Benítez-del-Castillo JM, García-Feijoo J, Herrero-Vanrell R. Comparison of the in vitro tolerance and in vivo efficacy of traditional timolol maleate eye drops versus new formulations with bioadhesive polymers. Investigative Ophthalmology and Visual Science. 2011. doi:10.1167/iovs.10-6338
17. Shedden A, Laurence J, Tipping R. Efficacy and tolerability of timolol maleate ophthalmic gel-forming solution versus timolol ophthalmic solution in adults with open-angle glaucoma or ocular hypertension: A six-month, double-masked, multicenter study. Clinical Therapeutics. 2001. doi:10.1016/S0149-2918(01)80048-5
18. Gupta S, Vyas SP. Carbopol/chitosan-based pH triggered in situ gelling system for ocular delivery of timolol maleate. Scientia Pharmaceutica. 2010. doi:10.3797/scipharm.1001-06
19. Mandal A, Pal D, Agrahari V, Trinh HM, Joseph M, Mitra AK. Ocular delivery of proteins and peptides: Challenges and novel formulation approaches. Advanced Drug Delivery Reviews. 2018. doi:10.1016/j.addr.2018.01.008
20. Darwhekar G, Jain P, Jain DK, Agrawal G. Development and Optimization of Dorzolamide Hydrochloride and Timolol Maleate in Situ Gel for Glaucoma Treatment Introduction : Asian J Pharm Ana. 2011.
21. Acharya A, Goudanavar P, Vinay CH. Determination of Mucoadhesive behaviour of Timolol maleate liquid crystalline cubogel by different Techniques. Asian Journal of Pharmaceutical Research. 2019. doi:10.5958/2231-5691.2019.00002.9
22. Kumar AMS, Bharath N, Rao MDS, Venkatesh P, Hepcykalarani D, Prema R. A Review on Mucoadhesive Drug Delivery Systems. Research Journal of Pharmaceutical Dosage Forms and Technology. 2019. doi:10.5958/0975-4377.2019.00047.8
23. John D, Charyulu RN, Ravi GS, Jose J. Nanosponge based hydrogels of etodolac for topical delivery. Research Journal of Pharmacy and Technology. 2020. doi:10.5958/0974-360x.2020.00688.5
24. Bao Q, Burgess DJ. Perspectives on Physicochemical and In Vitro Profiling of Ophthalmic Ointments. Pharmaceutical Research. 2018. doi:10.1007/s11095-018-2513-3
25. Lehman PA, Raney SG, Franz TJ. Percutaneous absorption in man: In vitro-in vivo correlation. Skin Pharmacology and Physiology. 2011. doi:10.1159/000324884
26. European Comission, “Ban on animal testing,” Internal Market, Industry, Entrepreneurship and SMEs - European Commission, Jul. 05, 2016. https://ec.europa.eu/growth/sectors/cosmetics/animal-testing_en (accessed Feb. 17, 2020).
27. Franca JR, Foureaux G, Fuscaldi LL, et al. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: In Vitro and in Vivo evaluation. PLoS ONE. 2014. doi:10.1371/journal.pone.0095461
28. Mazyed EA, Abdelaziz AE. Fabrication of transgelosomes for enhancing the ocular delivery of acetazolamide: Statistical optimization, in vitro characterization, and in vivo study. Pharmaceutics. 2020. doi:10.3390/pharmaceutics12050465
29. del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discovery Today. 2008. doi:10.1016/j.drudis.2007.11.002
30. Bartosova L, Bajgar J. Transdermal Drug Delivery In Vitro Using Diffusion Cells. Current Medicinal Chemistry. 2012. doi:10.2174/092986712803306358