Author(s):
Noer Ulfah, Samuel Rehuel Santoso, Lambang Bargowo, Shafira Kurnia, Chiquita Prahasanti
Email(s):
chiquita-p-s@fkg.unair.ac.id
DOI:
10.52711/0974-360X.2022.00586
Address:
Noer Ulfah1, Samuel Rehuel Santoso2, Lambang Bargowo1, Shafira Kurnia1, Chiquita Prahasanti3
1Department of Periodontology, Faculty of Dental Medicine Universitas Airlangga, Jl. Prof. Dr. Moestopo No. 47 Surabaya – Indonesia.
2Periodontology Specialist Program Student, Faculty of Dental Medicine Universitas Airlangga, Jl. Prof. Dr. Moestopo No. 47 Surabaya – Indonesia.
3Professor of Department of Periodontology, Faculty of Dental Medicine Universitas Airlangga, Jl. Prof. Dr. Moestopo No. 47 Surabaya – Indonesia.
*Corresponding Author
Published In:
Volume - 15,
Issue - 8,
Year - 2022
ABSTRACT:
Background: Damage to the periodontium tissue requires a regenerative treatment to increase the dimensions of the lost bone. This research was conducted to find another regenerative material with the use of type 1 collagen peptides derived from gourami fish scales. This study was conducted to test the viability of gourami scales collagen peptides on Human Gingival Fibroblast cells for 24 hours. Purpose: To determine the viability of Human Gingival Fibroblasts (HGF) after the administration of collagen peptides of gourami fish scales. Method: HGF was taken from healthy gingiva and planted in 96 well plates. The type 1 collagen peptides of gourami fish scales with concentrations of 0.32 mg / ml, 0.16 mg / ml, 0.04 mg / ml, 0.02 mg / ml and 0.01 mg / ml were inserted into each well and incubated for 24 hours. MTT Assay was performed to see the viability of fibroblast cells. Results: There was an increase in the viability value from a concentration of 0.32 mg/ml to 0.01 mg/ml. The concentration of 0.01 mg/ml showed the highest viability. Conclusion: The collagen peptide is a potential substance for tissue engineering. The concentration of 0.01 mg/ml collagen peptides shows the highest HGF viability.
Cite this article:
Noer Ulfah, Samuel Rehuel Santoso, Lambang Bargowo, Shafira Kurnia, Chiquita Prahasanti. The Viability of Collagen Peptide from Osphronemus goramy Fish Scale Extract on Human Gingival Fibroblast. Research Journal of Pharmacy and Technology. 2022; 15(8):3497-1. doi: 10.52711/0974-360X.2022.00586
Cite(Electronic):
Noer Ulfah, Samuel Rehuel Santoso, Lambang Bargowo, Shafira Kurnia, Chiquita Prahasanti. The Viability of Collagen Peptide from Osphronemus goramy Fish Scale Extract on Human Gingival Fibroblast. Research Journal of Pharmacy and Technology. 2022; 15(8):3497-1. doi: 10.52711/0974-360X.2022.00586 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-8-28
REFERENCES:
1. Sheehy EJ, Cunniffe GM, O’Brien FJ. Collagen-based biomaterials for tissue regeneration and repair. Pept Proteins as Biomater Tissue Regen Repair. 2018:127-150. doi:10.1016/B978-0-08-100803-4.00005-X
2. Shi S, Jiang W, Zhao T, et al. The application of nanomaterials in controlled drug delivery for bone regeneration. J Biomed Mater Res - Part A. 2015;103(12):3978-3992. doi:10.1002/jbm.a.35522
3. Hossain A, Roy S, Guin PS. The Importance of Advance Biomaterials in Modern Technology: A Review. Asian J Res Chem. 2017;10(4):441-453. doi:10.5958/0974-4150.2017.00073.6
4. Diksha, Sazal P. Role of Stem Cells in treatment of different Diseases. Res J Pharm Technol. 2018;11(8):3667-3678. doi:10.5958/0974-360X.2018.00674.1
5. Bilem I, Chevallier P, Plawinski L, Sone ED, Durrieu MC, Laroche G. RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells. Acta Biomater. 2016;36:132-142. doi:10.1016/j.actbio.2016.03.032
6. León-Mancilla BH, Araiza-Téllez MA, Flores-Flores JO, Piña-Barba MC. Physico-chemical characterization of collagen scaffolds for tissue engineering. J Appl Res Technol. 2016;14(1):77-85. doi:10.1016/j.jart.2016.01.001
7. Indira R, Harihara Priya G, Tamizharuvi T, Jaisankar V. Synthesis and Characterization of Novel Bio-Elastomers for Tissue Engineering. Asian J Res Chem. 2013;6(9):814-818. https://ajrconline.org/HTMLPaper.aspx?Journal=Asian Journal of Research in Chemistry; PID=2013-6-9-4.
8. Neto AS, Ferreira JMF. Synthetic and marine-derived porous scaffolds for bone tissue engineering. Materials (Basel). 2018;11(9). doi:10.3390/ma11091702
9. Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater. 2019;4(October):271-292. doi:10.1016/j.bioactmat.2019.10.005
10. Nugraha AP, Rezkita F, Puspitaningrum MS, et al. Gingival Mesenchymal Stem Cells and Chitosan Scaffold to Accelerate Alveolar Bone Remodelling in Periodontitis: A Narrative Review. Res J Pharm Technol. 2020;13(5):2502-2506. doi:10.5958/0974-360X.2020.00446.1
11. Aswin K, Jothishwar S, Nayagam VC, Priya G. Scaffolds for Biomolecule Delivery and Controlled Release–A Review. Res J Pharm Technol. 2018;11(10):4719-4730. doi:10.5958/0974-360X.2018.00861.2
12. Cvrček L, Horáková M. Chapter 14 - Plasma Modified Polymeric Materials for Implant Applications. In: Thomas S, Mozetič M, Cvelbar U, Špatenka P, K.M. PBT-N-TPT for PM, eds. Elsevier; 2019:367-407. doi:https://doi.org/10.1016/B978-0-12-813152-7.00014-7
13. Lim YS, Ok YJ, Hwang SY, Kwak JY, Yoon S. Marine collagen as a promising biomaterial for biomedical applications. Mar Drugs. 2019;17(8). doi:10.3390/md17080467
14. Radhika G, Sreelakhsmi Divya P, Prashanty Reddy G, Venkatesh P, Ravindra Reddy K. An Overview on Regenerative Medicine. Res J Pharm Technol. 2010;3(3):727-728.
15. Agarwal S, Jhunjhunwala V, Priya G. Fabrication and Morphological Analysis of Gelatin-Alginate Scaffolds. Res J Pharm Technol. 2018;11(9):3816-3818. doi:10.5958/0974-360X.2018.00699.6
16. McKee TJ, Perlman G, Morris M, Komarova S V. Extracellular matrix composition of connective tissues: a systematic review and meta-analysis. Sci Rep. 2019;9(1):1-15. doi:10.1038/s41598-019-46896-0
17. Kusindarta DL. The Role of Extracellular Matrix in Tissue Regeneration. In: Kaoud HWE-HA hay E-S, ed. Rijeka: IntechOpen; 2018:Ch. 5. doi:10.5772/intechopen.75728
18. Kruger TE, Miller AH, Wang J. Collagen scaffolds in bone sialoprotein-mediated bone regeneration. Sci World J. 2013;2013(I). doi:10.1155/2013/812718
19. Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online. 2019;18(1):1-74. doi:10.1186/s12938-019-0647-0
20. Calabrese G, Gulino R, Giuffrida R, et al. In vivo evaluation of biocompatibility and chondrogenic potential of a cell-free collagen-based scaffold. Front Physiol. 2017;8(NOV):1-11. doi:10.3389/fphys.2017.00984
21. Ko E, Yang K, Shin J, Cho SW. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules. 2013;14(9):3202-3213. doi:10.1021/bm4008343
22. Ridhanya, Rajakumari K. Skin Wound Healing: An update on the Current knowledge and Concepts. Res J Pharm Technol. 2019;12(3):1448-1452. doi:10.5958/0974-360X.2019.00240.3
23. Zulkifeli NRAN, Zain HHM, Zainol I, Musa NHC. The properties of Hydrolysed Collagen from Oreochromis mossambicus’s scale and their effect towards Cell viability. Res J Pharm Technol. 2020;13(12):5855-5860. doi:10.5958/0974-360X.2020.01020.3
24. León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. Hydrolyzed Collagen—Sources and Applications. Molecules. 2019;24(22):4031. doi:10.3390/molecules24224031
25. Hong H, Fan H, Chalamaiah M, Wu J. Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives. Food Chem. 2019;301(July):125222. doi:10.1016/j.foodchem.2019.125222
26. Schmidt MM, Dornelles RCP, Mello RO, et al. Collagen extraction process. Int Food Res J. 2016;23(3):913-922.
27. Jin HX, Xu HP, Li Y, Zhang QW, Xie H. Preparation and evaluation of peptides with potential antioxidant activity by microwave assisted enzymatic hydrolysis of collagen from sea cucumber Acaudina molpadioides obtained from Zhejiang province in China. Mar Drugs. 2019;17(3). doi:10.3390/md17030169
28. Hu CH, Yao CH, Chan TM, et al. Effects of different concentrations of collagenous peptide from fish scales on osteoblast proliferation and osteoclast resorption. Chin J Physiol. 2016;59(4):191-201. doi:10.4077/CJP.2016.BAE398
29. Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011;25(8):1813-1827. doi:10.1016/j.foodhyd.2011.02.007
30. Bahi M, Jacob C, Khairan K. Efek sitotoksik haarlem oil terhadap HL- 60 cell line dan steinernema fetiae. J Kedokt Hewan. 2013;10(2):109-114.
31. Mayerhöfer TG, Pipa A V., Popp J. Beer’s Law-Why Integrated Absorbance Depends Linearly on Concentration. ChemPhysChem. 2019;20(21):2748-2753. doi:10.1002/cphc.201900787
32. Amin MN, Hidayat M, Permatasari N, Choiron MA. The Differences Color Intensity, pH, Absorbance Value of Frangipani (Plumeria accuminata Ait) Sap During Storage. Res J Pharm Technol. 2020;13(12):5871-5875. doi:10.5958/0974-360X.2020.01023.9
33. McCormack JP, Allan GM, Virani AS. Is bigger better? An argument for very low starting doses. Cmaj. 2011;183(1):65-69. doi:10.1503/cmaj.091481
34. Liu C, Sun J. Potential application of hydrolyzed fish collagen for inducing the multidirectional differentiation of rat bone marrow mesenchymal stem cells. Biomacromolecules. 2014;15(1):436-443. doi:10.1021/bm401780v
35. Yamada S, Yoshizawa Y, Kawakubo A, Ikeda T, Yanagiguchi K, Hayashi Y. Early gene and protein expression associated with osteoblast differentiation in response to fish collagen peptides powder. Dent Mater J. 2013;32(2):233-240. doi:10.4012/dmj.2012-188
36. Mahesh L, Kurtzman GM, Shukla S. Regeneration in Periodontics: Collagen-A Review of Its Properties and Applications in Dentistry. Compend Contin Educ Dent. 2015;36(5):358-363.