Author(s):
Nittaya Ngamkhae, Yaowared Chulikhit, Orawan Monthakantirat, Juthamart Maneenet, Charinya Khamphukdee, Chantana Boonyarat, Supawadee Daodee
Email(s):
csupawad@kku.ac.th
DOI:
10.52711/0974-360X.2022.00606
Address:
Nittaya Ngamkhae1, Yaowared Chulikhit1, Orawan Monthakantirat1, Juthamart Maneenet1, Charinya Khamphukdee2, Chantana Boonyarat1, Supawadee Daodee1*
1Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
2Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
*Corresponding Author
Published In:
Volume - 15,
Issue - 8,
Year - 2022
ABSTRACT:
Kleeb Bua Daeng formula is a popular traditional remedy sold by the Chao Phya Abhaibhubejhr Hospital, Thailand. This formula contains Piper nigrum L., Nelumbo nucifera Gaertn. and Centella asiatica L. components. A reliable and accurate analytical method for the determination of five major active compounds in this formula was developed and validated. High performance liquid chromatography with a diode-array detector was used to quantify piperine, quercitin, kaempferol, asiaticoside and madecassoside in Kleeb Bua Daeng formula. The separation was carried out using a hypersil C18 column with detection at wavelengths 210, 280 and 370 nm. Gradient chromatographic conditions using a mixture of 0.05% phosphoric acid and acetonitrile allowed for complete resolution of the 5 active compounds. The validation outcomes for accuracy, precision, linearity, limit of detection, limit of quantitation and robustness demonstrated that this HPLC method was accurate and reliable for the simultaneous determination of active compounds in this formula. Hence, this developed and validated HPLC fingerprint method is appropriate for quality control of Kleeb Bua Daeng formula and could be applied to modified Kleeb Bua Daeng formulations.
Cite this article:
Nittaya Ngamkhae, Yaowared Chulikhit, Orawan Monthakantirat, Juthamart Maneenet, Charinya Khamphukdee, Chantana Boonyarat, Supawadee Daodee. Development and Validation of a High-performance Liquid Chromatography Method for Simultaneous Determination of Five Active Compounds in Kleeb Bua Daeng Formula. Research Journal of Pharmacy and Technology. 2022; 15(8):3618-6. doi: 10.52711/0974-360X.2022.00606
Cite(Electronic):
Nittaya Ngamkhae, Yaowared Chulikhit, Orawan Monthakantirat, Juthamart Maneenet, Charinya Khamphukdee, Chantana Boonyarat, Supawadee Daodee. Development and Validation of a High-performance Liquid Chromatography Method for Simultaneous Determination of Five Active Compounds in Kleeb Bua Daeng Formula. Research Journal of Pharmacy and Technology. 2022; 15(8):3618-6. doi: 10.52711/0974-360X.2022.00606 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-8-48
REFERENCES:
1. Ahmad A, Husain A, Mujeeb M. Khan SA, Alhadrami HAA, Bhandan A. Quantification of total phenol, flavonoid content and pharmacognostical evaluation including HPTLC fingerprinting for the standardization of Piper nigrum Linn fruits. Asian Pacific Journal of Tropical Biomedicine. 2015; 5(2): 101–107. doi.org/10.1016/S2221-1691(15)30152-0
2. Deng Y, Sriwiriyajan S, Tedasen A, Hiransai P, Graidist P. Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro. Journal of Ethnopharmacology. 2016; 188: 87–95. doi: 10.1016/j.jep.2016.04.047
3. Hritcu L, Noumedem JA, Cioanca O, Hancianu M, Postu P, Mihasan M. Anxiolytic and antidepressant profile of the methanolic extract of Piper nigrum fruits in beta-amyloid (1-42) rat model of Alzheimer’s disease. Behavioral & Brain Functions. 2015; 11(1):1-13. doi: 10.1186/s12993-015-0059-7
4. Zarai Z, Boujelbene E, Salem NB, Gargouri Y, Sayari A. Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum. LWT - Food Sciences &Technology. 2013; 50(2): 634–41. doi: 10.1016/j.lwt.2012.07.036
5. Tasleem F, Azhar I, Ali SN, Perveen S, Mahmood ZA. Analgesic and anti-inflammatory activities of Piper nigrum L. Asian Pacific Journal of Tropical Medicine. 2014; 7(S1):S461–S468. doi: 10.1016/S1995-7645(14)60275-3
6. Akunneh -Wariso C, Aduema W. Comparative Hypoglycemic effects of aqueous leaf extracts of Vernonia amygdalina, Ocimum gratissimum, Phyllanthus amarus, Gongronema latifolum, Piper nigrum and Solanum melongena on Blood Glucose Level of Alloxan-Induced Diabetic Guinea Pigs. Research Joyrnal of Pharmacology and Pharmacodynamics.2019; 11(2):55-61. doi: 10.5958/2321-5836.2019.00010.7
7. Samyuktha G, Sahu NC. Effect of Methanolic seed extract of Piper nigrum aganist Acetic acid induced Ulcerative colitis in rats. Research Journal of Pharmacology and Pharmacodynamics.2019; 11(2):62-66. doi: 10.5958/2321-5836.2019.00011.9
8. Pal N, Joshi M. D. Piper nigrum: An Overview of effects on Human Health. Research Journal of Science and Technology. 2020; 12(4):331-337. doi: 10.5958/2349-2988.2020.00050.9
9. Zhu F, Mojel R, Li G. Physicochemical properties of black pepper (Piper nigrum) starch. Carbohydrate Polymers. 2018; 181: 986–93. doi: 10.1016/j.carbpol.2017.11.051
10. Liu SH, Lu TH, Su CC, Lay IS, Lin HY, Fang KM, et al. Lotus leaf (Nelumbo nucifera) and its active constituents prevent inflammatory responses in macrophages via JNK/NF-κB signaling pathway. American Journal of Chinese Medicines. 2014; 42(4): 869–89. doi: 10.1142/S0192415X14500554
11. Shin DJ, Choe J, Hwang KE, Kim CJ, Jo C. Antioxidant effects of lotus (Nelumbo nucifera) root and leaf extracts and their application on pork patties as inhibitors of lipid oxidation, alone and in combination. International Journal of Food Properties. 2019; 22(1): 383–94. doi.org/10.1080/10942912.2019.1588295
12. Kim ES, Weon JB, Yun BR, Lee J, Eom MR, Oh KH, Ma CJ. Cognitive Enhancing and Neuroprotective Effect of the Embryo of the Nelumbo nucifera Seed. Evidence-Based Complementary & Alternative Medicines. 2014; 869831. doi.org/10.1155/2014/869831
13. Prabsattroo T, Wattanathorn J, Somsapt P, Sritragool O. Positive Modulation of Pink Nelumbo nucifera Flowers on Memory Impairment, Brain Damage, and Biochemical Profiles in Restraint Rats. Oxidative Medicine & Cellular Longevity. 2016; 5789857. doi: 10.1155/2016/5789857
14. Zhao X, Feng X, Wang C, Peng D, Zhu K, Song JL. Anticancer activity of Nelumbo nucifera stamen extract in human colon cancer HCT-116 cells in vitro. Oncology Letter. 2016; 13(3):1470–78. doi.org/10.3892/ol.2016.5547
15. Brindha D, Arthi. D. Antimicrobial activity of white and pink Nelumbo nucifera gaertn flowers. Asian Journal of Pharmaceutical Research & Health Care. 2010; 2: 147-55
16. Ahmed H, Hakani G, Aslam M, Khatian, N. A review of the important pharmacological activities of Nelumbo nucifera: A prodigious rhizome. International Journal of Biomedical and Advance Research. 2019; 10(01): e5007. doi.org/10.7439/ijbar
17. Mehta, N., Patel, E. P., Patani, P., Biren Shah V, Shah, B. Nelumbo nucifera (Lotus): A Review on Ethanobotany, Phytochemistry and Pharmacology. Indian Journal of Pharmaceutical and Biological Research. 2013;1(4): 152-67. doi.org/10.30750/ijpbr.1.4.26
18. Mukherjee PK, Mukherjee D, Maji AK, Rai S, Heinrich M. The sacred lotus (Nelumbo nucifera)—Phytochemical and therapeutic profile. Journal of Pharmacy and Pharmacology. 2009; 61(4): 407–22. doi: 10.1211/jpp/61.04.0001
19. Chen S, Fang L, Xi H, Guan L, Fang J, Liu Y, Wu B, Li S. Simultaneous qualitative assessment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry. Analytica Chimica Acta. 2012; 724: 127–135. doi: 10.1016/j.aca.2012.02.051
20. Chen S, Xiang Y, Deng J, Liu Y, Li S. Simultaneous Ana lysis of Anthocyanin and Non-Anthocyanin Flavonoid in Various Tissues of Different Lotus (Nelumbo) Cultivars by HPLC-DAD-ESI-MSn. PLoS ONE. 2013; 8(4): e62291. doi.org/10.1371/journal.pone.0062291
21. Deng J, Chen S, Yin X, Wang K, Liu Y, Li S, Yang P. “Systematic qualitative and quantitative assessment of anthocyanins, flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars. Food Chemistry. 2013; 139(1–4): 307–12. doi: 10.1016/j.foodchem.2013.02.010
22. Li SS, Wu J, Chen LG, Du H, Xu YJ, Wang LJ, Zhang HJ, Zheng XC, Wang LS. Biogenesis of C-Glycosyl Flavones and Profiling of Flavonoid Glycosides in Lotus (Nelumbo nucifera), PLoS ONE. 2014; 9(10): e108860. doi.org/10.1371/journal.pone.0108860
23. Yang RZ, Wei XL, Gao FF, Wang LS, Zhang HJ, Xu YJ, Li CH, Ge YX, Zhang JJ, Zhang J. Simultaneous analysis of anthocyanins and flavonols in petals of lotus (Nelumbo) cultivars by high-performance liquid chromatography-photodiode array detection/electrospray ionization mass spectrometry. Journal of Chromatography A. 2009; 1216(1): 106–12. doi: 10.1016/j.chroma.2008.11.046
24. Azis HA, Taher M, Ahmed AS, Sulaiman WMAW, Susanti D, Chowdhury SR, Zakaria ZA. In vitro and In vivo wound healing studies of methanolic fraction of Centella asiatica extract. South African Journal of Botany. 2017; 108: 163–74. doi.org/10.1016/j.sajb.2016.10.022
25. Park JH, Choi JY, Son DJ, Park EK, Song MJ, Hellstrom M, Hong JT. Anti-inflammatory effect of titrated extract of Centella asiatica in phthalic anhydride-induced allergic dermatitis animal model. International Journal of Molecular Science. 2017; 18(4): 1–14. doi.org/10.3390/ijms18040738
26. Kumar A, Dogra S, Prakash A. Neuroprotective Effects of Centella asiatica against Intracerebroventricular Colchicine-Induced Cognitive Impairment and Oxidative Stress. International Journal of Alzheimer’s Disease. 2009; Article ID 972178. doi: 10.4061/2009/972178
27. Pittella F, Dutra R, Junior D, Lopes MT, Barbosa N. Antioxidant and Cytotoxic Activities of Centella asiatica (L) Urb. International Journal of Molecular Science. 2009; 10(9): 3713-21. doi: 10.3390/ijms10093713
28. Biradar SK, Tyagi CK. Phytochemical Screening and Immunomodulatory Activities of Methanolic Extract of Eclipta alba and Centella asiatica. Research Journal of Pharmacology and Pharmacodynamics. 2021; 13(1):5-8. doi: 10.5958/2321-5836.2021.00002.1
29. Suresh M, Rath PK, Panneerselvam A, Dhanasekaran D, Thajuddin. Anti-Mycobacterial Effect of Leaf Extract of Centella asiatica (Mackinlayaceae). Research Journal of Pharmacy and Technology. 2010; 3 (3): J872-876.
30. Trivedi MN, Khemani A, Vachhani UD, Shah CP, Santani DD. Pharmacognostic, Phytochemical and Microbiological Studies of the Plants Centella asiatica (Linn.) Urban and Withania somnifera (Linn.) Dunal Treasured as Intelligence Boost. Research Journal of Pharmacy and Technology. 2011; 4(11):1707-1713.
31. Brinkhaus B, Lindner M, Schuppan D, Hahn EG. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine. 2000; 7(5): 427–48. doi: 10.1016/s0944-7113(00)80065-3
32. Gunathilake KDPP, Ranaweera KKDS, Rupasinghe HPV. Response surface optimization for recovery of polyphenols and carotenoids from leaves of Centella asiatica using an ethanol-based solvent system. Food Science & Nutrition. 2019; 7(2): 528–536. doi.org/10.1002/fsn3.832
33. Ashok KBS, Lakshman K, Jayaveera KN, Vamshi KN, Manjunath M, Suresh MV, Shivatej HR, Sudheer N. Estimation of Rutin and Quercetin in Terminalia chebula by HPLC. Asian Journal of Research in Chemistry. 2009; 2(4): 388-389.
34. Panya T, Chansri N, Daodee S. Development and evaluation of lozenge from Moringa oleifera leaf extract. Research Journal of Pharmacy and Technology. 2016; 9(7): 805-809. DOI: 10.5958/0974-360X.2016.00154.2
35. M. Senthil R, Imran K, Perumal P. Quantitative Analysis of Glycyrrhizic Acid in Crude Drug and its Herbal Formulation by HPLC. Asian Journal of Research in Chemistry. 2010; 3(3):703-706.
36. Anil DM, Nandini RP. Simultaneous Determination of Eight Phytoconstituents in Triphala churna by HPLC–DAD. Research Journal of Pharmacognosy and Phytochemistry. 2011; 3(2): 62-66.
37. Liu HL, Luo R, Chen XQ, Ba YY, Zheng L, Guo WW, Wu X. Identification and simultaneous quantification of five alkaloids in Piper longum L. by HPLC–ESI-MSn and UFLC–ESI-MS/MS and their application to Piper nigrum L. Food Chemistry. 2015; 177: 191–6. doi: 10.1016/j.foodchem.2015.01.033
38. Gorgani L, Mohammadi M, Najafpour GD, Nikzad M. Piperine-The Bioactive Compound of Black Pepper: From Isolation to Medicinal Formulations: Piperine isolation from pepper. Comprehensive Reviews in Food Science and Food Safety. 2017; 16(1): 124–40. doi.org/10.1111/1541-4337.12246
39. Guo X, Wang D, Duan W, Du J, Wang X. Preparative isolation and purification of four flavonoids from the petals of Nelumbo nucifera by high-speed counter-current chromatography. Phytochemical Analysis. 2010; 21(3): 268–72. doi.org/10.1002/pca.1196
40. Günther B, Wagner H. Quantitative determination of triterpenes in extracts and phytopreparations of Centella asiatica (L.) urban. Phytomedicine. 1996; 3(1): 59–65. doi: 10.1016/S0944-7113(96)80011-0
41. Thongnopnua P. High-performance liquid chromatographic determination of asiatic acid in human plasma. Thai Journal of Pharmaceutical Sciences. 2008; 32: 10-6.
42. Rafamantanana MH, Rozet E, Raoelison GE, Cheuk K, Ratsimamanga SU, Hubert Ph, Quetin-Leclercq J. An improved HPLC-UV method for the simultaneous quantification of triterpenic glycosides and aglycones in leaves of Centella asiatica (L.) Urb (APIACEAE). Journal of Chromatography B. 2009; 877(23): 2396–402. doi.org/10.1016/j.jchromb.2009.03.018
43. Alqahtani A, Tongkao-on W, Li KM, Razmovski-Naumovski V, Chan K, Li GQ. Seasonal variation of triterpenes and phenolic compounds in australian Centella asiatica (L.) Urb. Phytochemical Analysis. 2015; 26(6): 436–43. doi: 10.1002/pca.2578
44. Monton C, Luprasong C, Suksaeree J, Songsak T. Validated high performance liquid chromatography for simultaneous determination of stability of madecassoside and asiaticoside in film forming polymeric dispersions. Revista Brasileira de Farmacognosia. 2018; 28(3): 289–93. doi.org/10.1016/j.bjp.2018.04.003
45. Maneenet J, Daodee S, Monthakantirat O, Boonyarat C, Khamphukdee C, Kwankhao P, Pitiporn S, Awale S, Chulikhit Y, Kijjoa A. Kleeb Bua Daeng, a Thai Traditional Herbal Formula, Ameliorated Unpredictable Chronic Mild Stress-Induced Cognitive Impairment in ICR Mice. Molecules. 2019; 24(24): 4587. doi: 10.3390/molecules24244587
46. Nuutila AM, Kammiovirta K, Oksman-Caldentey KM. Comparison of methods for the hydrolysis of flavonoid and phenolic acids from onion and spinach for HPLC analysis. Food Chemistry. 2002; 76(4): 519-25. doi: 10.1016/S0308-8146(01)00305-3
47. Panya T, Chansri N, Sripanidkulchai B, Daodee S. Additional antioxidants on the determination of quercetin from Moringa oleifera leaves and variation content from different sources. International Food Research Journal. 2018; 25(1):51-5.
48. Panya T, Chansri N, Daodee S. Development and Evaluation of Lozenge from Moringa oleifera leaf extract. Research Journal of Pharmacy and Technology. 2016; 9(7):805-809. doi: 10.5958/0974-360X.2016.00154.2
49. Tietje C, Brouder A. (Eds.). International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. In Handbook of Transnational Economic Governance Regimes. Leiden: Martinus Nijhoff. .2009: 1041–53. http://nijhoffonline.nl/book?id=nij9789004163300_n...
50. Yang W, Chen YH, Liu H, Qu HD. Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model. International Journal of Molecular Medicine. 2015; 36(5): 1369–76. doi: 10.3892/ijmm.2015.2356
51. Wang G, Li Y, Lei C, Lei X, Zhu X, Yang L, et al. Quercetin exerts antidepressant and cardioprotective effects in estrogen receptor α-deficient female mice via BDNF-AKT/ERK1/2 signaling. The Journal of Steroid Biochemistry and Molecular Biology. 2021; 206:105795. doi: 10.1016/j.jsbmb.2020.105795
52. Demir EA, Gergerlioglu HS, Oz M. Antidepressant‐like effects of quercetin in diabetic rats are independent of hypothalamic–pituitary–adrenal axis. Acta Neuropsychiatrica. 2016; 28(1): 23–30. doi.org/10.1017/neu.2015.45
53. Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology. 2015; 93: 134–45. doi: 10.1016/j.neuropharm.2015.01.027
54. El-Horany HE, El-latif RNA, ElBatsh MM, Emam MN. Ameliorative Effect of Quercetin on Neurochemical and Behavioral Deficits in Rotenone Rat Model of Parkinson’s Disease: Modulating Autophagy (Quercetin on Experimental Parkinson’s Disease): Quercetin on experimental Parkinson’s desease. Journal of Biochemical and Molecular Toxicology. 2016; 30(7): 360–69. doi: 10.1002/jbt.21821
55. Gao W. Antidepressive effects of kaempferol mediated by reduction of oxidative stress, proinflammatory cytokines and up-regulation of AKT/β-catenin cascade. Metabolism Brain Disease. 2019; 34(2): 485-494. doi: 10.1007/s11011-019-0389-5
56. Pan X, Liu X, Zhao H, Wu B, Liu G. Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. Journal of Functional Foods. 2020; 74: 104140. doi.org/10.1016/j.jff.2020.104140
57. Wang L, Guo T, Guo Y, Xu Y. Asiaticoside produces an antidepressant‑like effect in a chronic unpredictable mild stress model of depression in mice, involving reversion of inflammation and the PKA/pCREB/BDNF signaling pathway. Molecular Medicine Reports. 2020; 22(3): 2364–2372. doi.org/10.3892/mmr.2020.11305
58. Subaraja M, Vanisree AJ. The novel phytocomponent asiaticoside-D isolated from Centella asiatica exhibits monoamine oxidase-B inhibiting potential in the rotenone degenerated cerebral ganglions of Lumbricus terrestris. Phytomedicine. 2019; 58: 152833. doi: 10.1016/j.phymed.2019.152833
59. Ling APK, Chan HH, Koh RY, Wong YP. Neuroprotective roles of asiaticoside on hydrogen peroxide-induced toxicity in SH-SY5Y cells. Journal of Fundamental and Applied Sciences. 2017; 9: S7. doi.org/10.4314/jfas.v9i7s.60
60. Liu MR, Han T, Chen Y, Qin LP, Zheng HC, Rui YC. Effect of madecassoside on depression behaviour of mice and activities of MAO in different brain regions of rats. Journal of Chinese Integrative Medicine. 2004; 2(6): 440–444. DOI: 10.3736/jcim20040611