Author(s): Vadim Tsyvunin, Sergiy Shtrygol, Mariia Mishchenko, Iryna Ryzhenko, Diana Shtrygol, Denis Oklei

Email(s): tsyvunin-vad@ukr.net

DOI: 10.52711/0974-360X.2022.00713   

Address: Vadim Tsyvunin1*, Sergiy Shtrygol1, Mariia Mishchenko1, Iryna Ryzhenko1, Diana Shtrygol2, Denis Oklei3
1Department of Pharmacology and Pharmacotherapy, National University of Pharmacy of the Ministry of Health of Ukraine, 61002, Kharkiv, Ukraine.
2Department of Neurology, Psychiatry, Narcology and Medical Psychology, School of Medicine, V.N. Karazin Kharkiv National University, 61022, Kharkiv, Ukraine.
3Department of Surgical Diseases, Operative Surgery and Topographic Anatomy, School of Medicine, V.N. Karazin Kharkiv National University, 61022, Kharkiv, Ukraine.
*Corresponding Author

Published In:   Volume - 15,      Issue - 9,     Year - 2022


ABSTRACT:
The aim of the study was to determine the effect of low doses of cardiac glycoside digoxin on the anticonvulsant effect of five classical antiepileptic drugs, sodium valproate, topiramate, levetiracetam, clonazepam and phenobarbital, under experimental seizures in mice. Antiepileptic drugs were administered 30 min before to seizure induction once intragastrically at conditionally effective (ED50) and sub-effective (½ ED50) doses: sodium valproate and topiramate – at doses of 300 and 150 mg/kg; levetiracetam – at doses of 100 and 50 mg/kg; phenobarbital – at doses of 20 and 10 mg/kg; clonazepam – at doses of 0.1 and 0.05 mg/kg body weight. Digoxin was administered once subcutaneously at a dose of 0.8 mg/kg body weight (1/10 LD50) 10-15 min before seizure induction. Maximal electroshock seizure model was reproduced by transmitting an electric current (strength – 50 mA, frequency – 50 Hz) through the corneal electrodes for 0.2 sec. It was found that low-dose digoxin potentiates the anticonvulsant effects of sodium valproate, topiramate and phenobarbital as well as modulates the effects of levetiracetam and clonazepam, showing a distinct pharmacological effect of their sub-effective doses and increasing their therapeutic potential even under incomplete seizure control – the equivalent of drug-resistant epilepsy. The obtained results substantiate the expediency of further study of digoxin as an anticonvulsant drug in the adjuvant therapy of epilepsy and other seizure conditions.


Cite this article:
Vadim Tsyvunin, Sergiy Shtrygol, Mariia Mishchenko, Iryna Ryzhenko, Diana Shtrygol, Denis Oklei. Low-Dose Digoxin is Associated with Anticonvulsant Effect Enhancement of Classical Antiepileptic Drugs in the Electro-Induced Seizures in Mice. Research Journal of Pharmacy and Technology. 2022; 15(9):4241-7. doi: 10.52711/0974-360X.2022.00713

Cite(Electronic):
Vadim Tsyvunin, Sergiy Shtrygol, Mariia Mishchenko, Iryna Ryzhenko, Diana Shtrygol, Denis Oklei. Low-Dose Digoxin is Associated with Anticonvulsant Effect Enhancement of Classical Antiepileptic Drugs in the Electro-Induced Seizures in Mice. Research Journal of Pharmacy and Technology. 2022; 15(9):4241-7. doi: 10.52711/0974-360X.2022.00713   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-9-73


REFERENCES:
1.    Jain P et al. Epilepsy: A Neurological Cramp. Research J. Pharmacology and Pharmacodynamics. 2013; 5(1):01-05.
2.    Mendem A et al. A Review on effectiveness of different Antiepileptic Drugs in Pediatric Febrile Seizures. Asian J. Res. Pharm. Sci. 2019; 9(2):85-90.
3.    Kobylarek D et al. Advances in the Potential Biomarkers of Epilepsy. Front Neurol, 2019; 10(685):1-26.
4.    Rana A and Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflammation, 2018; 15(1):144.
5.    Löscher W. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacology, 2020; 167:107605.
6.    Raimondo JV et al. Ion dynamics during seizures. Front Cell Neurosci, 2015; 9(419):1-14.
7.    French JA. Cenobamate for focal seizures – a game changer? Nat Rev Neurol, 2020; 16:133-134.
8.    Kanner AM et al. Practice guideline update summary: Efficacy and tolerability of the new antiepileptic drugs II: Treatment-resistant epilepsy: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology, 2018; 91(2):82-90.
9.    Dhrivastava AK et al. Epilepsy: the next generation drugs. Journal of Drug Delivery & Therapeutics, 2019; 9(1):286-292.
10.    Borowicz K and Banach M. Antiarrhythmic drugs and epilepsy. Pharmacol Rep, 2014; 66(4):545-551.
11.    Zeiler F et al. Lidocaine for status epilepticus in adults. Seizure, 2015; 31:41-48.
12.    De Sarro G et al. Influence of some β-adrenoceptor antagonists on the anticonvulsant potency of antiepileptic drugs against audiogenic seizures in DBA/2 mice. Eur J Pharmacol, 2002; 442(3):205-213.
13.    El-Azab M and Moustafa Y. Influence of calcium channel blockers on anticonvulsant and antinociceptive activities of valproic acid in pentylenetetrazole-kindled mice. Pharmacol Rep, 2012; 64(2):305-314.
14.    Larkin J et al. Nifedipine for Epilepsy? A Double-Blind, Placebo-Controlled Trial. Epilepsia, 1992; 33(2):346-352.
15.    Joshi YR, Sapkale PV, Patil PP. Effect of Nimodipine alone and in combination with Gabapentin against Pentylenetetrazole induced Seizures in Mice. Asian J Pharm Res, 2018; 8(4):215-220.
16.    Wróblewska D et al. Interactions of Mexiletine with Novel Antiepileptic Drugs in the Maximal Electroshock Test in Mice: An Isobolographic Analysis. Neurochem Res, 2018; 43(10):1887-1896.
17.    Sawicka KM et al. Influence of Ivabradine on the Anticonvulsant Action of Four Classical Antiepileptic Drugs Against Maximal Electroshock-Induced Seizures in Mice. Neurochem Res, 2017; 42(4):1038-1043.
18.    Sawicka K et al. Ivabradine attenuates the anticonvulsant potency of lamotrigine, but not that of lacosamide, pregabalin and topiramate in the tonic-clonic seizure model in mice. Epilepsy Res, 2017; 133:67-70.
19.    Chimakurthy J, Murthy TEGK, Upadhyay L. Effect of Curcumin on Sub-Therapeutic Doses of AED’S And Long Term Memory In MES Induced GTC Type of Seizures in Rats. Research J Pharm and Tech, 2008; 1(4):401-404.
20.    Uma DP, Sooraj S, Merin B, Jipnomon J. Beneficial Interaction of Piperine with Sodium Valproate against maximal Electroshock induced Seizures in Mice. Research J Pharm and Tech, 2017; 10(11):3967-3968.
21.    Sooraj S, Merin B, Jipnomon J, Uma DP. Facilitatory effect of Piperine on the Anticonvulsant effect of Sodium valproate against Pentylenetetrazole induced Seizures in mice. Research J Pharm and Tech, 2020; 13(2):651-652.
22.    Divya et al. Anti-epileptic Activity of Carica papaya seed extract in Experimental Animals. Research J. Pharm. and Tech. 2019; 12(12):6007-6012.
23.    Yadav V et al. Phytochemical Analysis and Comparative Anticonvulsant Activity of Celastrus paniculatus Willd. MES Induced Seizure in Mice. Asian J. Research Chem. 2011; 4(10):1553-1556.
24.    Debnath J et al. An Experimental Evaluation of Anticonvulsant Activity of Ethanolic Extract of Seeds of Holarrhena antidysenterica In Mice. Research J. Pharmacology and Pharmacodynamics. 2011; 3(1):31-33.
25.    Grisar T. Glial and neuronal Na+-K+ pump in epilepsy. Ann Neurol, 1984; 16(Suppl):S128-S134.
26.    De Lores Arnaiz GR and Ordieres MG. Brain Na+, K+-ATPase Activity in Aging and Disease. Int J Biomed Sci, 2014; 10(2):85-102.
27.    Chu Y, Parada I, Prince DA. Temporal and topographic alterations in expression of the α3 isoform of Na+,K+-ATPase in the rat freeze lesion model of microgyria and epileptogenesis. Neuroscience, 2009; 162:339-348.
28.    Funck VR et al. Contrasting effects of Na+,K+-ATPase activation on seizure activity in acute versus chronic models. Neuroscience, 2015; 298:171-179.
29.    Krishnan GP, Filatov G, Shilnikov A, Bazhenov M. Electrogenic properties of the Na+/K+ ATPase control transitions between normal and pathological brain states. J Neurophysiol, 2015; 113:3356-3374.
30.    Silva LF et al. The involvement of Na+, K+-ATPase activity and free radical generation in the susceptibility to pentylenetetrazol-induced seizures after experimental traumatic brain injury. J Neurol Sci, 2011; 308(1-2):35-40.
31.    Siegel GJ and Goodwin BB. Sodium-potassium-activated adenosine triphosphatase of brain microsomes: modification of sodium inhibition by diphenylhydantoins. J Clin Invest, 1972; 51(5):1164-1169.
32.    Sergeev PV and Shimanovskii NL. Biochemical Pharmacology. Moscow, Russia: Moscow Information Agency. 2010. (available in Russian).
33.    Markova IV, Mikhaĭlov IB, Guzeva VI. Digoxin – an active antiepileptic agent. Farmakologiia i toksikologiia – Pharmacology and toxicology, 1991; (54)5:52-54. (available in Russian).
34.    Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug Metabolism and Pharmacokinetics, the Blood-Brain Barrier, and Central Nervous System Drug Discovery. NeuroRx, 2005; 2(4):554-571.
35.    Shtrygol’ SY and Shtrygol’ DV. Digoxin as an antiepileptic in children (clinical and experimental study). Ukrayinskyi medychnyi al’manakh – Ukrainian Medical Almanac, 2010; 13(4):164. (available in Russian).
36.    Tsyvunin V, Shtrygol’ S, Shtrygol’ D. Digoxin enhances the effect of antiepileptic drugs with different mechanism of action in the pentylenetetrazole-induced seizures in mice. Epilepsy Res, 2020; 167:106465.
37.    Duveau V et al. Differential Effects of Antiepileptic Drugs on Focal Seizures in the Intrahippocampal Kainate Mouse Model of Mesial Temporal Lobe Epilepsy. CNS Neurosci Ther, 2016; 22(6):497-506.
38.    Hock FJ. Drug Discovery and Evaluation: Pharmacological Assays. New York, USA: Springer International Publishing. 2016.
39.    Mironov AN, Bunyatyan ND, Vasileva AN. Guidelines for conducting pre-clinical trials of medicines. Part one. Moscow, Russia: Grif and K. 2012. (available in Russian).
40.    Mishchenko M, Shtrygol S, Kaminskyy D, Lesyk R. Thiazole-Bearing 4-Thiazolidinones as New Anticonvulsant Agents. Sci Pharm, 2020; 88:16.
41.    Ratna B, Krishna B, Bhavani K. Investigation on the effect of the Drug Levetiracetam combined with Clobazam on MES Model of Epilepsy. Research J Pharm and Tech, 2020; 13(6):2792-2796.
42.    Kandratavicius L et al. Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat, 2014; 10:1693-1705.
43.    Waller D and Sampson A. Medical Pharmacology and Therapeutics (Fifth Edition). Amsterdam, Netherlands: Elsevier. 2018.
44.    Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure, 2011; 20(5):359-368.
45.    Fromm MF. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther, 2000; 38(2):69-74.
46.    Taskar KS et al. Unmasking the Role of Uptake Transporters for Digoxin Uptake Across the Barriers of the Central Nervous System in Rat. J Cent Nerv Syst Dis, 2017; 9:1179573517693596.
47.    Wessler JD, Grip LT, Mendell J, Giugliano RP. The P-Glycoprotein Transport System and Cardiovascular Drugs. J Am Coll Cardiol, 2013; 61(25):2495-2502.
48.    Jambhekar SS and Breen PJ. Basic Pharmacokinetics. London, UK: Pharmaceutical Press. 2009.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available