Author(s):
Pratik R. Aher, Rushikesh V. Aher, Tejas S. Ahire, Monali B. Patil, Hitesh V. Shahare, Shweta S. Gedam
Email(s):
hvshahare@gmail.com
DOI:
10.52711/0974-360X.2022.00723
Address:
Pratik R. Aher*1, Rushikesh V. Aher1, Tejas S. Ahire1, Monali B. Patil1, Hitesh V. Shahare1, Shweta S. Gedam2
1SNJBs Shriman Sureshdada Jain College of Pharmacy, Chandwad, Nashik, Maharashtra – 423101.
2Sandip Institute of Pharmaceutical Sciences, Nashik, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 15,
Issue - 9,
Year - 2022
ABSTRACT:
Drug repurposing is an innovative drug discovery technique that looks for new therapeutic advantages in previously used, shelved, and clinically tested medications. This strategy is now gaining traction as a way to get around the financial, timing, and resource bottlenecks that plague traditional drug development. Several efforts have been undertaken in this respect to develop stratagems based on bioinformatics and computational technologies to speed up the repurposing process. A number of novel computational tools have evolved to enable systematic repurposing screenings, both experimentally and through in silico techniques. Access to molecular data, adequate analytical knowledge to provide strong insights, knowledge and experimental set up for validation, and clinical development know-how are all required for a successful medication repurposing pipeline. This review presents the benefits, considerations, and obstacles in repurposing as a drug development strategy adopted by pharmaceutical companies.
Cite this article:
Pratik R. Aher, Rushikesh V. Aher, Tejas S. Ahire, Monali B. Patil, Hitesh V. Shahare, Shweta S. Gedam. Repurposing of Drugs: Updates and New Perspectives. Research Journal of Pharmacy and Technology. 2022; 15(9):4309-4. doi: 10.52711/0974-360X.2022.00723
Cite(Electronic):
Pratik R. Aher, Rushikesh V. Aher, Tejas S. Ahire, Monali B. Patil, Hitesh V. Shahare, Shweta S. Gedam. Repurposing of Drugs: Updates and New Perspectives. Research Journal of Pharmacy and Technology. 2022; 15(9):4309-4. doi: 10.52711/0974-360X.2022.00723 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-9-83
REFERENCE:
1. Kennedy JP. et al Application of Combinatorial Chemistry Science on Modern Drug Discovery. J. Comb. Chem 2008; 10: 345–354. doi: 10.1021/cc700187t.
2. N. NIH, Repurposing Drugs. National Center for Advancing Translational Sciences, (n.d.) (July 23, 2018), Repurpose.
3. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol 2008; 4: 682–690. https://doi.org/10.1038/nchembio.118.
4. O’Connor KA. et al Finding New Tricks for Old Drugs: An Efficient Route for Public-Sector Drug Discovery”, Nat. Rev. Drug Discov 2005; 4: 1005–1014. doi: 10.1038/nrd1900
5. https://www.sciencedirect.com/science/article/pii/S0753332218372871
6. Barratt MJ. Frail DE. Drug Repositioning Bringing New Life to Shelved Assets and Existing Drugs. Hoboken, 2012. United States: John Wiley and Sons.
7. Ashburn TT. Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-683. doi: 10.1038/nrd1468.
8. Boolell M. et al An orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot. Res 1996; 8: 47–52.
9. Chong CR. et al Inhibition of angiogenesis by the antifungal drug itraconazole, ACS Chem. Biol. 2007; 2: 263–270. doi: 10.1021/cb600362d.
10. Rudin CM. et al Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non-small-cell lung cancer. J. Thorac. Oncol 2013; 8: 619–623. doi: 10.1097/JTO.0b013e31828c3950.
11. Ashburn TT. Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-683. doi: 10.1038/nrd1468.
12. Sun W. Sanderson PE. Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov Today 2016; 21:1189-1195. doi: 10.1016/j.drudis.2016.05.015.
13. Barratt MJ. Frail DE. Drug Repositioning Bringing New Life to Shelved Assets And Existing Drugs. Hoboken, 2012 United States: John Wiley and Sons.
14. Smith RB. Repositioned drugs: integrating intellectual property and regulatory strategies. Drug Discov Today 2011; 8(3): 131-137. doi: 10.1016/j.ddstr.2011.07.001
15. Murteira S. et al Drug reformulations and repositioning in the pharmaceutical industry and their impact on market access: regulatory implications. Journal of Market Access and Health Policy 2014; 2: 22-28. doi: 10.3402/jmahp.v2.22813
16. Witkowski TX. Intellectual property and other legal aspects of drug repurposing. Drug Discov Today 2011; 8(3): 139-143. https://doi.org/10.1016/j.ddstr.2011.06.007
17. Fleseriu M. Petersenn S. Medical management of Cushing’s disease: what is the future? Pituitary 2012; 15(3): 330-341. doi: 10.1007/s11102-012-0397-5
18. Oprea TI. Overington JP. Computational and practical aspects of drug repositioning. Assay and Drug Development Technologies 2015; 13: 299-306. https://dx.doi.org/10.1089%2Fadt.2015.29011.tiodrrr
19. Lionta E. et al Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Current Topics in Medicinal Chemistry 2014; 14: 1923-1938. doi: 10.2174/1568026614666140929124445.
20. Talevi A. Drug repositioning: Current approaches and their implications in the precision medicine era. Expert Review of Precision Medicine and Drug Development 2018; 3(1): 49-61. https://doi.org/10.1080/23808993.2018.1424535
21. Huang R. et al The NCGC Pharmaceutical Collection: A Comprehensive Resource of Clinically Approved Drugs Enabling Repurposing and Chemical Genomics. Science Translational Med 2011, 3(80): 1-16. doi: 10.1126/scitranslmed.3001862.
22. Rosa SGV. Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Revista Panamericana de Salud Pública 2020; 44: 40.
23. Pushpakom S. Iorio F. Eyers PA et al Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18: 41–58. doi: 10.1038/nrd.2018.168.
24. Pollastri MP. Fexinidazole: a new drug for african sleeping sickness on the horizon. Trends Parasitol 2018; 34: 178–179. doi: 10.1016/j.pt.2017.12.002.
25. Garrido P. Aldaz A. Vera R et al Proposal for the creation of a national strategy for precision medicine in cancer: a position statement of SEOM, SEAP, and SEFH. Clin Transl Oncol 2017; 41 (6): 688–691. doi: 10.1007/s12094-017-1740-0
26. Jones MR. Schrader KA. Shen Y et al Response to angiotensin blockade with irbesartan in a patient with metastatic colorectal cancer. Ann Oncol 2016; 27(7): 801–806. doi: 10.1093/annonc/mdw060.
27. Sun W. Sanderson PE. Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov Today 2016; 21(7):1189–1195. doi: 10.1016/j.drudis.2016.05.015.
28. Allarakhia M. Open-source approaches for the repurposing of existing or failed candidate drugs: learning from and applying the lessons across diseases. Drug Des Devel Ther 2013; 7: 753–766. doi: 10.2147/DDDT.S46289.
29. Doan TL. et al The Future of Drug Repositioning: Old Drugs, New Opportunities”, In Annu. Rep. Med. Chem.., Macor J. E., editor., Ed. Academic Press: Oxford 2011; Vol. 46: 385–401.
30. Jin G. Wong STC. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today 2014; 19(5): 637-644. doi: 10.1016/j.drudis.2013.11.005.
31. Moffat JG. et al Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov 2017; 16(8): 531-543. doi: 10.1038/nrd.2017.111.
32. Swinney DC. Phenotypic vs. Target-Based Drug Discovery for First-in-Class Medicines. Clin Pharmacol Ther 2013; 93(4): 299-301. doi: 10.1038/clpt.2012.236.
33. Cuadrado‐Tejedor M Hervias I Ricobaraza A Puerta E Pérez‐Roldán J García‐Barroso C et al Sildenafil restores cognitive function without affecting β‐amyloid burden in a mouse model of Alzheimer's disease. British journal of pharmacology 2011, 164(8): 2029-41. doi: 10.1111/j.1476-5381.2011.01517.x.
34. Kolb P. et al Docking and Chemoinformatic Screens for New Ligands and Targets. Curr Opin Biotechnol 2009; 20(4): 429-436. doi: 10.1016/j.copbio.2009.08.003
35. Jadamba E. Shin M. A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network. BioMed Research Internation 2016; 2016: 39-55. https://doi.org/10.1155/2016/7147039
36. Jin G. Wong STC. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today 2014; 19(5):637-644. doi: 10.1016/j.drudis.2013.11.005.
37. Chong CR. et al A clinical drug library screen identifies astemizole as an antimalarial agent. Nature Chemical Biology 2006; 2: 415-416. doi: 10.1038/nchembio806.
38. Appleby BS. Cummings JL. Discovering new treatments for Alzheimer’s disease by repurposing approved medications. Current Topics in Medicinal Chemistry 2013; 13: 2306-2327. doi: 10.2174/15680266113136660162.
39. Hashimoto K. Microglial activation in schizophrenia and minocycline treatment. Progress in Neuro psychopharmacology and Biological Psychiatry 2008; 7(32): 1758-9. doi: 10.1016/j.pnpbp.2008.06.012.
40. Rothstein JD. Patel S. Regan MR. Haenggeli C. Huang YH. Bergles DE et al β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005; 433(7021): 73. doi: 10.1038/nature03180.
41. Vlassenko AG. Vaishnavi SN. Couture L. Sacco D. Shannon BJ. Mach RH et al Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition. Proceedings of the National Academy of Sciences 2010; 107(41): 17763-7. doi: 10.1073/pnas.1010461107.
42. Monacelli F. Cea M. Borghi R. Odetti P. Nencioni A. Do cancer drugs counteract neurodegeneration? Repurposing for alzheimer’s disease. Journal of Alzheimer's Disease 2017; 55(4):1295-306. doi: 10.3233/JAD-160840