Author(s):
Urvi Das Sharma, Lalit Kumar, Ruchi Verma
Email(s):
ruchi.verma@manipal.edu
DOI:
10.52711/0974-360X.2022.00726
Address:
Urvi Das Sharma1, Lalit Kumar2, Ruchi Verma1*
1Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India – 576104.
2Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India – 576104.
*Corresponding Author
Published In:
Volume - 15,
Issue - 9,
Year - 2022
ABSTRACT:
Selection of ideal mobile phase and stationary phase is very important to get accurate separation of mixtures or impurities as a whole. There indeed are parameters which are explained in this article, important to be kept in mind while a method development of HPLC method. But as such there is no list of such parameters and their accurate limits can be applied while method development. In this article, there have been mention of certain parameters which are generally looked for, and not exact, but optimal application of such has been discussed. When we talk about stationary phase, parameters which we tend to optimize very often include mostly commonly the pH of the analyte as well the mobile phase used and stability of the column packing material over a range of temperature. Choosing of stationary phase greatly depends on the nature of analyte. Stationary phase will depend and vary simultaneously if analyte is lipophilic or an ionic compound. In order to increase separation and increase mass transfer there have been new addition to column packing material apart from the widely used silica. New advances result into greater column loading, better flow, reduced plate height and reduced back pressure. Leaving alone stationary phase, mobile phase selection is also a task of its own. Very commonly used mobile phase solvents include acetonitrile, methanol, THF, water and buffer of salts like acetate, phosphate, etc. Apart from these traditional choices, there have been use of pressurized hot water and ionic liquids as mobile phases which are termed as “Environmental-friendly” because these solvents are devoid of any organic counterpart or organic modifier in them, which produces harmful fumes on getting heated. Apart from the environmentally friendly mobile phase options, we have some specific chemicals to be used when chemical property of the analyte is specific.
Cite this article:
Urvi Das Sharma, Lalit Kumar, Ruchi Verma. Selection of Stationary Phase and Mobile Phase in High Performance Liquid Chromatography. Research Journal of Pharmacy and Technology. 2022; 15(9):4325-2. doi: 10.52711/0974-360X.2022.00726
Cite(Electronic):
Urvi Das Sharma, Lalit Kumar, Ruchi Verma. Selection of Stationary Phase and Mobile Phase in High Performance Liquid Chromatography. Research Journal of Pharmacy and Technology. 2022; 15(9):4325-2. doi: 10.52711/0974-360X.2022.00726 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2022-15-9-86
REFERENCES:
1. Sahu PK. Ramisetti NR. Cecchi T. Swain S. Patro CS. Panda J. An overview of experimental designs in HPLC method development and validation. Journal of pharmaceutical and biomedical analysis. 2018; 147:590-611. doi.org/10.1016/j.jpba.2017.05.006
2. Barwick VJ. Strategies for solvent selection — a literature review. TrAC Trends in Analytical Chemistry. 1997; 16:293-309. doi.org/10.1016/S0165-9936(97)00039-3
3. De Beer M. Lynen F. Chen K. Ferguson P. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm. Analytical chemistry. 2010; 82(5):1733-43. doi.org/10.1021/ac902287v
4. Kirkland JJ. HPLC Method Development: Practical Aspects of Increasing Analysis Speed While Maintaining Separation Resolution. Journal of chromatographic science, 1993; 31(12):493-97.
5. Nawrocki J. Dunlap C. McCormick A. Carr PW. Part I. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. Journal of chromatography A. 2004; 1028(1):1-30. doi: 10.1016/j.chroma.2003.11.052
6. Gennaro MC. Giacosa D/ Abrigo C. The Role of pH of the Mobile-Phase in Ion-Interaction RP-HPLC. Journal of Liquid Chromatography & Related Technologies. 1994; 17:4365-80. doi.org/10.1080/10826079408013623
7. Yang X. Ma L. Carr PW. High temperature fast chromatography of proteins using a silica-based stationary phase with greatly enhanced low pH stability. Journal of Chromatography A. 2005; 1079:213-20. doi.org/ 10.1016/j.chroma.2004.11.069.
8. Claessens H. Van Straten MA. Review on the chemical and thermal stability of stationary phases for reversed-phase liquid chromatography. Journal of Chromatography A. 2004; 1060 (1-2):23-41. doi.org/10.1016/j.chroma.2004.08.098
9. Tang Y. Significance of mobile phase composition in enantioseparation of chiral drugs by HPLC on a cellulose‐based chiral stationary phase. Chirality. 1996; 8:136-42. doi.org/10.1002/(sici)1520-636x(1996)8:1<136::aid-chir20>3.0.co;2-n
10. Witte DT. Bruggeman FJ. Franke JP. Copinga S. Jansen JM. De Zeeuw RA. Comparison between cellulose and amylose tris(3,5‐dimethylphenylcarbamate) chiral stationary phases for enantiomeric separation of 17 amidotetralins. Chirality. 1993; 5:545-53. doi.org/10.1002/chir.530050711
11. Chankvetadze B. Yamamoto C. d Okamoto Y. Enantioseparation of selected chiral sulfoxides using polysaccharide-type chiral stationary phases and polar organic, polar aqueous-organic and normal-phase eluents. Journal of chromatography A. 2001; 922: 127-37. doi.org/10.1016/s0021-9673(01)00958-x.
12. Nakano T. Optically active synthetic polymers as chiral stationary phases in HPLC. Journal of Chromatography A. 2001. 906(1-2):205-25. doi.org/10.1016/S0021-9673(00)00944-4
13. Blackwell JA. Carr P. A Chromatographic study of the lewis acid-base chemistry of zirconia surfaces. Journal of Liquid Chromatography. 1991; 14:2875-89. doi.org/10.1080/01483919108049363
14. Eeltink S. Svec F. Recent advances in the control of morphology and surface chemistry of porous polymer‐based monolithic stationary phases and their application in CEC. Electrophoresis. 2007; 28:137-147. doi.org/10.1002/elps.200600573
15. Mc Calley DV. Selection of suitable stationary phases and optimum conditions for their application in the separation of basic compounds by reversed‐phase HPLC. Journal of separation science. 2003; 26:187-200. doi.org/10.1002/jssc.200390026
16. Tennikova TB. Svec F. High-performance membrane chromatography: Highly efficient separation method for proteins in ion-exchange, hydrophobic interaction and reversed-phase modes. Journal of Chromatography A. 1993; 646 (2):279-88. doi.org/10.1016/0021-9673(93)83340-X
17. Kroppenstedt RM. Separation of Bacterial Menaquinones by HPLC Using Reverse Phase (RP18) and a Silver Loaded Ion Exchanger as Stationary Phases. Journal of Liquid Chromatography. 1982; 5:2359-67. doi.org/10.1080/01483918208067640
18. Kirkland JJ. Development of some stationary phases for reversed-phase high performance liquid chromatography. Journal of Chromatography A. 2004; 1060: 9-21. PMID: 15628149
19. Ali I. AL‐Othman ZA. Nagae N. Gaitonde VD. Dutta, KK. Recent trends in ultra‐fast HPLC: New generation superficially porous silica columns. Journal of separation science. 2012; 35 (23):3235- 49. doi.org/10.1002/jssc.201200454
20. Ali I. Gaitonde VD. Grahn A. Halo columns: new generation technology for high speed liquid chromatography. Journal of chromatographic science. 2010; 48 (5):386-94. doi.org/10.1093/chromsci/48.5.386
21. Gritti F. Leonardis I. Shock D. Stevenson P. Shalliker A. Guiochon G. Performance of columns packed with the new shell particles, Kinetex-C18. Journal of Chromatography A. 2010; 1217:1589-1603. doi.org/10.1016/j.chroma.2009.12.079
22. Benhaim, D. Grushka, E. Characterization of Ascentis RP-Amide column: Lipophilicity measurement and linear solvation energy relationships. Journal of Chromatography A. 2010; 1217:65-74. doi.org/10.1016/j.chroma.2009.11.013
23. Bakalyar SR. McIlwrick R. Roggendorf E. Solvent selectivity in reversed-phase high-pressure liquid chromatography. Journal of Chromatography A. 1977;142: 353-65. doi.org/10.1016/S0021-9673(01)92050-3
24. Lee DP. Reversed-Phase HPLC from pH 1 to 13. Journal of Chromatographic Science.1982; 20 (5):203-08. doi.org/10.1093/chromsci/20.5.203
25. Subirats X. Roses M. Bosch E. On the Effect of Organic Solvent Composition on the pH of Buffered HPLC Mobile Phases and the pKa of Analytes—A Review Separation & Purification Reviews. 2007; 36:231-55. doi.org/10.1080/15422110701539129
26. Rosés M. Canals I. Allemann H. Siigur K. Bosch E. Retention of Ionizable Compounds on HPLC. 2. Effect of pH, Ionic Strength, and Mobile Phase Composition on the Retention of Weak Acids. Analytical chemistry. 1993; 65(23):4094-100. doi.org/10.1021/ac960105d
27. Canals I. Portal JA. Bosch E. Rosés M. Retention of Ionizable Compounds on HPLC. 4. Mobile-Phase pH Measurement in Methanol/Water. Analytical chemistry. 2000; 72 (8):1802-09. doi.org/ 10.1021/ac990943i
28. Billiet HA. De Galan L. Selection of mobile phase parameters and their optimization in reversed-phase liquid chromatography. Journal of Chromatography A.1989; 485:27-50. doi.org/10.1016/S0021-9673(01)89131-7
29. Nishant S. Chhabra GS, Shailesh L. Anil J. Development and Validation of RP-HPLC Method for the Estimation of Montelukast Sodium in Bulk and In Tablet Dosage Form. Research J. Science and Tech. 2011; 3(5): 257-60.
30. Schoenmakers PJ. Billiet HA. De Galan L. Use of gradient elution for rapid selection of isocratic conditions in reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 1981; 205:13-30. doi.org/10.1016/S0021-9673(00)81809-9
31. Chaskar SG. Avhad PS. Stability Indicating RP-HPLC Method Development and Validation of Esmolol in Bulk and Injection. Research J. Science and Tech. 2020; 12(2): 136-42. doi.org/10.5958/2349-2988.2020.00017.0
32. Hartonen K. Riekkola ML. Liquid chromatography at elevated temperatures with pure water as the mobile phase. TrAC Trends in Analytical Chemistry. 2008; 27(1):1-14. doi.org/10.1016/j.trac.2007.10.010
33. B. Thangabalan. M. Salomi. Sunitha N, Manohar Babu S. Development of validated RP-HPLC method for the estimation of Itraconazole in pure and pharmaceutical dosage form. Asian J. Pharm. Ana. 3(4): 2013; 119-23.
34. Vanhoenacker G. Sandra P. High temperature and temperature programmed HPLC: possibilities and limitations. Analytical and bioanalytical chemistry. 2008; 390:245-48. https://doi.org/10.1007/s00216-007-1671-7
35. Kirthi A. Shanmugam R. Mohana Lakshmi S. Ashok Kumar CK. Padmini K. Shanti Prathyusha M. Shilpa V. Analytical Method Development and Validation of a Stability-indicating RP-HPLC Method for the Analysis of Danazol in Pharmaceutical Dosage Form. Asian J. Pharm. Ana. 2016; 6(4): 227-34.
36. Coenegracht PMJ. Metting HJ. Smilde AK. Coenegracht-Lamers, P.J.M. A chemometric investigation of the selectivity of multisolvent mobile phase systems in RP-HPLC. Chromatographia. 1989; 27:135-41. https://doi.org/10.1007/BF02265865
37. Tang Y. 1996. Significance of mobile phase composition in enantioseparation of chiral drugs by HPLC on a cellulose‐based chiral stationary phase. Chirality. 1996; 8:136-42. doi.org/10.1002/(SICI)1520-636X(1996)8:1<136::AID-CHIR20>3.0.CO;2-N
38. Jadhav RS. Kendre PN. Kolhe MH, Lateef SN, Shelke SM, Godge RK. RP- HPLC Method for Simultaneous Estimation of Ofloxacin and Ornidazole from Bulk and Tablets. Research J. Science and Tech. 2009; 1(1):43-46.
39. Heidarizadeh, F. Nezhad ER. Sajjadifar S. Novel acidic ionic liquid as a catalyst and solvent for green synthesis of dihydropyrimidine derivatives. Scientia Iranica. 2013; 20:561-65. doi.org/10.1016/j.scient.2012.12.039
40. Rahul KG. Ganesh SS, Shraddha J. Simultaneous Estimation and Validation of Dapagliflozin and Saxagliptin in Bulk Drug and Dosage Form by RP-HPLC. Research J. Science and Tech. 2019; 11(1):59-63. doi.org/10.5958/2349-2988.2019.00008.1
41. Ranganath MK. Prasanta D. Kalyani Arikatla. Simultaneous method development and Validation of Amlodipine and Valsartan by HPLC. Research J. Science and Tech. 2020; 12(3):183-89. doi.org/10.5958/2349-2988.2020.00025.X
42. Berthod A Ruiz-Ángel MJ. Carda-Broch S. Recent advances on ionic liquid uses in separation techniques. Journal of Chromatography A. 2018; 1559:2-16. doi.org/10.1016/j.chroma.2017.09.044
43. Mohan S. Satyanarayana P. Nagalakshmi V. Sudheer KK. Srinivasa RG. Development and Validation of RP-HPLC Method for the Estimation of L-Methyl Folate and Tofisopam in combined Formulation. Asian J. Research Chem. 2021; 14(1):28-36. doi.org/10.5958/0974-4150.2021.00005.5
44. Polyakova Y. Koo YM. Row KH. Application of ionic liquids as mobile phase modifier in HPLC. Biotechnology and Bioprocess Engineering. 2006; 11:1. doi.org/10.1007/BF02931860
45. Nachiket SD. Ganesh SS, Jyoti. JV. Simultaneous Estimation, Validation and Force Degradation Study of Metformin Hydrochloride and Empagliflozin by RP-HPLC Method. Research J. Science and Tech. 2019; 11(2):135-47. doi.org/10.5958/2349-2988.2019.00021.4
46. Ayouni L. Cazorla G. Chaillou D. Herbreteau B. Rudaz S. Lantéri P. Carrupt PA. Fast Determination of Lipophilicity by HPLC. Chromatographia. 2005; 62:251-55. doi.org/10.1365/s10337-005-0608-6
47. Kapil R. Pushpendra S. Development and Validation of a HPLC method for the Determination of Metformin hydrochloride, Nateglinide and Pioglitazone hydrochloride in Multicomponent Formulation. Asian J. Research Chem. 2021; 14(1):7-12. doi.org/10.5958/0974-4150.2021.00002.X