Author(s): Gobardhan Bal, Lakshmi K, Rajkumar M, Bibhash C. Mohanta

Email(s): bibhashmohanta@gmail.com

DOI: 10.52711/0974-360X.2023.00805   

Address: Gobardhan Bal1, Lakshmi K1, Rajkumar M2, Bibhash C. Mohanta3*
1Chettinad School of Pharmaceutical Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam - 603103, Tamil Nadu, India.
2Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur - 844102, Bihar, India.
3Department of Pharmacy, Central University of South Bihar, Gaya - 824236, Bihar, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 10,     Year - 2023


ABSTRACT:
During pharmaceutical or biopharmaceutical drug product development, one of the most important steps to be followed is characterization and reverse engineering of the drug product. Out of so many characterization tools and orthogonal reverse engineering techniques, thermoanalytical methods are the most useful techniques. Different thermoanalytical techniques are used to identify, quantify and understand the interaction between different polymorphic forms of drug substances and excipients. These techniques are also used to monitor the physical form (amorphous or crystalline) of the drug substance in drug product throughout its manufacturing processes and helps in identifying, omitting or modifying the steps or processes responsible for change in physical or polymorphic form of the drug substance in the finished drug product. Thermoanalytical techniques are not only useful for characterization of small molecules but also extensively applied in analysis of biological samples and nano-formulations. In current scenario, pharmaceutical development specifically during generic drug development the most useful step is the reverse engineering. When reverse engineering of drug product is concerned, thermoanalytical techniques are the best tools to be used to prove the similarity of physico-chemical properties or same state of matter or arrangement of matter between test and reference products. However, in earlier days these techniques were not used as frequently as the other techniques like spectroscopy and chromatography. Various reasons for limited use of thermoanalytical techniques were unavailability of software or compatible hardware, manual sampling process and a tedious process of manual calculation which consumes lots of time. Now a day, due to advancement of technology, automation, use of robotics, and better understanding, and the thermal analysis not only become a powerful tool but also increase the throughput. The present review focuses on some of the most commonly used Thermoanalytical techniques e.g. Differential Scanning Calorimeter (DSC), Thermogravimetric Analysis (TGA), Solution Calorimeter (SC), Thermo Mechanical Analysis (TMA) and Isothermal Titration Calorimeter (ITC) for characterization and reverse engineering of different dosage forms like solid oral dosage forms, injectable formulation, inhalation formulation, ophthalmic formulation, and biosimilar formulation products such as peptides and proteins using specific case studies.


Cite this article:
Gobardhan Bal, Lakshmi K, Rajkumar M, Bibhash C. Mohanta. Characterization and Reverse Engineering of Pharmaceuticals: Role of Thermoanalytical Techniques. Research Journal of Pharmacy and Technology 2023; 16(10):4973-0. doi: 10.52711/0974-360X.2023.00805

Cite(Electronic):
Gobardhan Bal, Lakshmi K, Rajkumar M, Bibhash C. Mohanta. Characterization and Reverse Engineering of Pharmaceuticals: Role of Thermoanalytical Techniques. Research Journal of Pharmacy and Technology 2023; 16(10):4973-0. doi: 10.52711/0974-360X.2023.00805   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-10-75


REFERENCES:
1.    Kaur P, Jiang X, Duan J, Stier E. Applications of In Vitro–In Vivo Correlations in Generic Drug Development: Case Studies. The AAPS Journal. 2015; 17(4): 1035–1039. https://doi.org/10.1208%2Fs12248-015-9765-1.
2.    Kirchhoff CF, Wang XM, Conlon HD, Anderson S, Ryan AM, Bose A. Biosimilars: Key regulatory considerations and similarity assessment tools. Biotechnol Bioeng. 2017;114(12):2696-2705. https://doi.org/10.1002/bit.26438.
3.    Chang R-K, Raw A, Lionberger R, Yu L. Generic Development of Topical Dermatologic Products: Formulation Development, Process Development, and Testing of Topical Dermatologic Products. The AAPS Journal. 2013;15(1):41-52. https://doi.org/10.1208/s12248-012-9411-0.
4.    Feast M. Thermal analysis: basics, applications, and benefit. ChemTexts. 2015;1(8): 1-12. https://doi.org/10.1007/s40828-015-0008-y.
5.    Monajjemzadeh F, Ghaderi F. Thermal Analysis Methods in Pharmaceutical Quality Control. J. Mol. Pharm. Org. Process. Res. 2015; 3(1):1-2. https://doi.org/10.4172/2329-9053.1000e121.
6.    Giron D. Applications of thermal analysis in the pharmaceutical industry. J. Pharm. Biomed. Anal. 1986; 4(6): 755-770. https://doi.org/10.1016/0731-7085(86)80086-3.
7.    Sophie DC, Chad RD, Bruno CH. Differential scanning calorimetry: applications in drug development. Pharm. Sci. Technol. Today. 1999; 2(8): 311-320. https://doi.org/10.1016/S1461-5347(99)00181-9
8.    Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 2010;21(4):167-93. PMID: 21119929; PMCID: PMC2977967.
9.    Giron, D. Applications of Thermal Analysis and Coupled Techniques in Pharmaceutical Industry. Journal of Thermal Analysis and Calorimetry. 2002; 68: 335–357. https://doi.org/10.1023/A:1016015113795.
10.    Verma A, Verma A, Kumar P, Mohanta BC, Dinda SC. PEG Based Suppositories Bearing Anti-Tubercular Drugs: Effect of Drug Loading on Release and Physical Properties. Latin American Journal of Pharmacy. 2021; 40 (12): 2841-2847.
11.    Qi, S. Thermal Analysis of Pharmaceuticals. In: Müllertz, A., Perrie, Y., Rades, T. (eds) Analytical Techniques in the Pharmaceutical Sciences. Advances in Delivery Science and Technology. (1st ed). New York; Springer; 2016: 363-387. https://doi.org/10.1007/978-1-4939-4029-5_11.
12.    Mohanta BC, Dinda SC, Palei NN, Mishra G. Quality by Design Approach for Fabrication of Rifampicin Loaded Solid Lipid Nanoparticles: Effect on Formulation and Characteristic Parameters. Asian Journal of Pharmaceutics. 2020; 14 (1): 111-122.
13.    Reubke R, Mollica JA Jr. Applications of differential scanning calorimetry in pharmaceutical analysis. J. Pharm. Sci. 1967. 56(7), 822-825. https://doi.org/10.1002/jps.2600560706
14.    Mohanta BC, Dinda SC, Mishra G, Palei NN, Azger Dusthackeer VN. Formulation, Characterization, in vitro Anti-Tubercular Activity and Cyto-toxicity Study of Solid Lipid Nanoparticles of Isoniazid. Nano Biomedicine and Engineering. 2018; 10(4): 379-391.
15.    Leyva PC, Cruz AP, Espinosa SV, Martínez GE, Piñón BCI, Compean MI, Saavedra LMZ. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers. 2019; 12(5): 1-21. https://doi.org/10.3390/polym12010005.
16.    Palei NN, Mohanta BC, Das MK, Lakshmi SM. Lornoxicam loaded nanostructured lipid carriers for topical delivery: Optimization, skin uptake and in vivo studies. Journal of Drug Delivery Science and Technology, 2017; 39: 490-500.
17.    Mazumder B, Dey S, Bhattacharya S, Sarkar S, Mohanta B. Studies on Formulation and Characterization of Cellulose- Based Microspheres of Chlorpheniramine Maleate. Arch Pharm Sci & Res. 2009; 1: 166-174.
18.    Sravanthi L, Ravi BV, Raghvendra KM, Pugazhenthi G, Sabu T. Chapter 4 - Thermogravimetric Analysis for Characterization of Nanomaterials,Editor(s): Sabu T, Raju T, Ajesh KZ, Raghvendra KM. In Micro and Nano Technologies, Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, Elsevier 2017,67-108. https://doi.org/10.1016/B978-0-323-46139-9.00004-9.
19.    Arnot LF, Minet A, Patel N, Royall PG, Forbes B. Solution calorimetry as a tool for investigating drug interaction with intestinal fluid. Thermochim. Acta. 2004; 419(1–2): 259-266. http://dx.doi.org/10.1016/j.tca.2004.02.017.
20.    Jose J. Thermomechanical Analysis and Its Applications. In: Sabu Th, Raju T, Ajesh KZ, Raghvendra KM, eds. In: Micro and Nano Technologies, Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, Elsevier; 2017:159-171. https://doi.org/10.1016/B978-0-323-46139-9.00007-4.
21.    Campoy AV, Ohtaka H, Nezami A, Muzammil S, Freire E. Isothermal titration calorimetry. In: Bonifacino JS, Dasso M, Lippincott-Schwartz J, Harford JB, Yamada KM, eds. Current protocols in cell biology, John Wiley & Sons, Inc. 2004: 17(8):1-24. https://doi.org/10.1002/0471143030.cb1708s23
22.    Wagh PK, Ahirrao SP, Kshirsagar SJ. Novel Mucoadhesive Gastro Retentive Drug Delivery System of Ranitidine Hydrochloride. Asian J. Pharm. Res. 2019; 9(2): 80-86. https://doi: 10.5958/2231-5691.2019.00013.3.
23.    Chopade SS, Gaikwad E, Jadhav A, Patil N, Payghan S. Formulation and Evaluation of Fast Disintegrating Tenoxicam Tablets and The Comparison with Marketed Product. Asian J. Res. Pharm. Sci. 2020; 10(4):257-263. https://doi: 10.5958/2231-5659.2020.00046.6.
24.    Ahmad NA. Synthesis, Infrared spectroscopic and Thermal studies of [0.7(Cu2CdI4):0.3(AgIx:CuI(1-x))] of fast-ion conductor (x = 0.2, 0.4, 0.6 and 0.8 mol. wt. %). Asian J. Research Chem. 2015; 8(2): 131-140. https://doi: 10.5958/0974-4150.2015.00024.3.
25.    Jangde R, Singhour R, Daharwal SJ. Compatibility Studies Between Gatifloxacin and Pharmaceutical Excipients through Differential Scanning Calorimetry and Infra-Red Spectroscopy. Research J. Pharma. Dosage Forms and Tech. 2010; 2(1):103-106.
26.    Rajesh A, Sangeeta A, Lamba HS, Bhandari A, Kataria S. Solubility Enhancement, Physicochemical Characterization and In Vivo Evaluation of the Anti-Inflammatory Activity of Sulfasalazine in Complex withBeta-Cyclodextrin. Research J. Pharm. and Tech. 2012; 5(1):  129-132.
27.    Adilakshmi D, Mohammad AS, Rasheed N, Umadevi K, Pasupuleti C. Simultaneous Formulation, Estimation and Evaluation of Allopurinol Sustained Release Tablets using various suitable Excipients. Asian J. Pharm. Ana. 2016; 6(3): 155-166. https://doi: 10.5958/2231-5675.2016.00025.9
28.    Kumara Swamy S, Alli R. Preparation, Characterization and Optimization of Irbesartan Loaded Solid Lipid Nanoparticles for Oral Delivery. Asian Journal of Pharmacy and Technology. 2021; 11(2):97-4. https://doi: 10.52711/2231-5713.2021.00016.
29.    Sirohi D, Singh P, Pandey KN, Verma V, Kumar V, Saxena AK. Thermal and morphological behavior of PEEK/PEI blends with polyphosphazene coated carbon nanotube. Asian J. Research Chem. 2012; 5(5): 650-654.
30.    Damien T, Someshwara Rao B, Ashok Kumar P, Yadav AS, Kuikarni SV. Formulation and Evaluation Theophylline Floating Tablets and the Effect of Citric Acid on Release. Research J. Pharm. and Tech. 2010; 3(4): 1066-1071.
31.    Haq ZU, Khattak AK, Khan Z, Khan FU, Ather A, Khan SU. Thermal gravimetric analysis of fiber glass. Asian J. Research Chem. 2016; 9(1): 22-24. https://doi: 10.5958/0974-4150.2016.00004.3
32.    Saunders M, Podluii K, Shergill S, Buckton G, Royall P. The potential of high speed DSC (hyper-DSC) for the detection and quantification of small amounts of amorphous content in predominantly crystalline samples. Int J Pharm. 2004;274(1-2):35-40. https://doi.org/10.1016/j.ijpharm.2004.01.018.
33.    Macêdo RO, Aragão CFS, do Nascimento, TG et al. Application of Thermogravimetry in the Quality Control of Chloramphenicol Tablets. Journal of Thermal Analysis and Calorimetry.1996. 56, 1323–1327. https://doi.org/10.1023/A:1010102422381
34.    Barręto Gomes AP, Souza FS, Macędo RO. Thermal and dissolution kinetics of ampicillin drug and capsules. Journal of Thermal Analysis and Calorimetry. 2003; 72: 545–548. https://doi.org/10.1023/A:1024573515609.
35.    Felix T, Anwar H, Takeru H. Quantitative Analytical Method for Determination of Drugs Dispersed in Polymers Using Differential Scanning Calorimetry. J. Pharm. Sci. 1974; 63(3): 427-429. https://doi.org/10.1002/jps.2600630325.
36.    Katainen E, Niemelä P, Harjunen P, Suhonen J, Järvinen K. Evaluation of the amorphous content of lactose by solution calorimetry and Raman spectroscopy. Talanta. 2005;68(1):1-5. https://doi.org/10.1016/j.talanta.2005.04.062.
37.    Arnot LF, Minet A, Patel N, Royall PG, Forbes B. Solution calorimetry as a tool for investigating drug interaction with intestinal fluid. Thermochim. Acta. 2004; 419(1–2): 259-266. http://dx.doi.org/10.1016/j.tca.2004.02.017.
38.    Badipatla V, Pohlman D, Maheswaram MP, Mantheni D, Perera NI, Mittleman M, Alexander K, Riga A. Evaluating drug delivery of solid dose tablets by isothermal mechanical analysis. J. Therm. Anal. Calorim. 2012; 108: 1287–1292. http://dx.doi.org/10.1007/s10973-011-1477-x.
39.    Cai Q, He L, Wang S, Chu W, Zhou PW, Zhang L, Jiang S, Ma D, Liang X, Gou J, Yin T, Zhang Y, Tang X, He H. Process control and in vitro/in vivo evaluation of aripiprazole sustained-release microcrystals for intramuscular injection. Eur. J. Pharm. Sci. 2018;125: 193-204. http://dx.doi.org/10.1016/j.ejps.2018.09.017.
40.    Saravanan M, Bhaskar K, Maharajan G, Pillai SK. Development of gelatin microspheres loaded with diclofenac sodium for intra-articular administration. J. Drug Targeting. 2011;19(2): 96-103. https://doi.org/10.3109/10611861003733979.
41.    Demetzos C. Differential Scanning Calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J. Liposome Res. 2008; 18:159-173. http://dx.doi.org/10.1080/08982100802310261.
42.    Buttini F, Miozzi M, Balducci AG, Royall PG, Brambilla G, Colomboa P, Bettini R, Forbes B. Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers. Int. J. Pharm. 2014; 465(1-2):42-51. http://dx.doi.org/10.1016/j.ijpharm.2014.01.033.
43.    Tulbah A S, Ong HX, Colombo P, Young PM, Traini D. Novel simvastatin inhalation formulation and characterisation. AAPS Pharm Sci Tech. 2014; 15(4): 956-962. http://dx.doi.org/10.1208/s12249-014-0127-6.
44.    Vo A, Feng X, Patel D, Mohammad A, Patel M, Zheng J, Kozak D, Choi S, Ashraf M, Xu X. In vitro physicochemical characterization and dissolution of brinzolamide ophthalmic suspensions with similar composition. Int. J. Pharm. 2020; 588: 1-11. https://doi.org/10.1016/j.ijpharm.2020.119761.
45.    Shelley H, Grant M, Smith FT, Abarca EM, Babu RJ. Improved Ocular Delivery of Nepafenac by Cyclodextrin Complexation. AAPS Pharm Sci Tech 2018; 19(6): 2554-2563. https://doi.org/10.1208/s12249-018-1094-0.
46.    Moreno MR, Tabitha TS, Nirmal J, Radhakrishnan K, Yee CH, Lim S, Venkatraman S, Agrawal R. Study of stability and biophysical characterization of ranibizumab and aflibercept. Eur. J. Pharm. Biopharm. 2016; 108: 156-167. http://dx.doi.org/10.1016/j.ejpb.2016.09.003.
47.    Joseph RR, Tan DWN, Ramon MRM, Natarajan JV, Agrawal R, Wong TT, Venkatraman SS. Characterization of liposomal carriers for the trans-scleral transport of Ranibizumab. Sci. Rep. 2017; 7: 16803. http://dx.doi.org/10.1038/s41598-017-16791-7.
48.    Sormanni P, Amery L, Ekizoglou S, Vendruscolo M, Popovic B. Rapid and accurate in silico solubility screening of a monoclonal antibody library. Sci. Rep. 2017; 7: 8200. http://dx.doi.org/10.1038/s41598-017-07800-w.
49.    Kim NA, Hada S, Jeong SH. N-Acetylated-L-arginine (NALA) is an enhanced protein aggregation suppressor under interfacial stresses and elevated temperature for protein liquid formulations. Int. J. Biol. Macromol. 2021; 166: 654-664. https://doi.org/10.1016/j.ijbiomac.2020.10.223.
50.    Persikov AV, XU Y, Brodsky B. Equilibrium thermal transitions of collagen model peptides. Protein Sci.: A Publication of the Protein Society. 2004; 13(4): 893-902. https://doi.org/10.1110/ps.03501704.
51.    Kar K, Amin P, Bryan MA, Persikov AV, Mohs A, Wang YH, Brodsky B. Self-association of Collagen Triple Helic Peptides into Higher Order Structures. J. Biol. Chem. 2006; 281(44): 33283-33290. https://doi.org/10.1074/jbc.M605747200.
52.    Migliore R, Granata G, Rivoli A, Consoli GML, Sgarlata C. Binding Affinity and Driving Forces for the Interaction of Calixarene-Based Micellar Aggregates with Model Antibiotics in Neutral Aqueous Solution. Front. Chem. 2021; 8: 626467. https://doi.org/10.3389/fchem.2020.626467.
53.    Hamborg M, Rose F, Jorgensen L, Bjorklund K, Pedersen HB, Christensen D, Foged, C. Elucidating the mechanisms of protein antigen adsorption to the CAF/NAF liposomal vaccine adjuvant systems: Effect of charge, fluidity and antigen-to-lipid ratio. Biochimica et Biophysica Acta (BBA) – Biomembranes 2014; 1838(8): 2001-2010. http://dx.doi.org/10.1016/j.bbamem.2014.04.013.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available