Author(s): Nurul Jummah, Satrialdi, Aluicia Anita Artarini, Anindyajati, Diky Mudhakir

Email(s): mudhakir@itb.ac.id

DOI: 10.52711/0974-360X.2023.00984   

Address: Nurul Jummah1,2, Satrialdi1, Aluicia Anita Artarini1, Anindyajati1, Diky Mudhakir1*
1Department of Pharmaceutics, School of Pharmacy, InstitutTeknologi Bandung (ITB), Bandung 40132, Indonesia
2Department of Pharmacy, Faculty of Mathematics and Natural Science, Universitas Islam Makassar, Makassar 90245, Indonesia
*Corresponding Author

Published In:   Volume - 16,      Issue - 12,     Year - 2023


ABSTRACT:
Diabetic nephropathy is the leading cause of chronic kidney disease. The pathogenesis of diabetic nephropathy consists of four main pathways that indicate intracellular metabolic abnormalities identified in diabetic nephropathy, namely the activation of polyol and protein kinase C pathways, formation of advanced glycation end products, increased oxidative stress, and intraglomerular hypertension. Conventional treatment approaches for diabetic nephropathy that have been through clinical trials are, among others, the use of glucose-lowering agents, reduction of blood pressure, reduction of capillary permeability, and antioxidants. Although such treatments have been proven to slow the severity of diabetic nephropathy which leads to chronic kidney failure, their effectiveness does not cure diabetic nephropathy in patients. Thus, the modification of drug delivery systems and the widely-performed gene therapy need to be reviewed for their effectiveness with the previous treatments of diabetic nephropathy. This review article discusses the perspective of implementing the most effective diabetic nephropathy treatment system in order to achieve the therapeutic goals of diabetic nephropathy. The modification of drug delivery system and the gene therapies are expected to be able to increase the effectiveness of the drugs and guarantee their safety. The characteristics of the therapeutic targets in each kidney cell need to be understood more deeply so that the therapeutic goals can be achieved. It is hoped that the testing in the clinical phase of diabetic nephropathy by modifications of the drug delivery system and gene-based therapies will be widely carried out in the future.


Cite this article:
Nurul Jummah, Satrialdi, Aluicia Anita Artarini, Anindyajati, Diky Mudhakir. Diabetic Nephropathy: Pathogenesis and Drug Delivery System. Research Journal of Pharmacy and Technology.2023; 16(12):6062-0. doi: 10.52711/0974-360X.2023.00984

Cite(Electronic):
Nurul Jummah, Satrialdi, Aluicia Anita Artarini, Anindyajati, Diky Mudhakir. Diabetic Nephropathy: Pathogenesis and Drug Delivery System. Research Journal of Pharmacy and Technology.2023; 16(12):6062-0. doi: 10.52711/0974-360X.2023.00984   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-12-85


REFERENCES:
1.    IDF Diabetes Atlas 9th edition. IDF Diabetes Atlas 9th edition 2019. International Diabetes Federation Diabetes Atlas, Ninth Edition. 2019. 1–176.
2.    Umanath K, Lewis JB. Update on Diabetic Nephropathy: Core Curriculum 2018. American Journal of Kidney Diseases. 2018; 71(6): 884–95. doi.org/10.1053/j.ajkd.2017.10.026
3.    Kawanami D, Utsunomiya K. Epidemiology of diabetic nephropathy. Nihon Rinsho. 2016; 74: 153–7. PMID: 27266079.
4.    Han Q, Zhu H, Chen X, Liu Z. Non-genetic mechanisms of diabetic nephropathy. Front Med. 2017; 11(3): 319–32. doi.org/ 10.1007/s11684-017-0569-9
5.    Ioannou K. Diabetic nephropathy: Is it always there? assumptions, weaknesses and pitfalls in the diagnosis. Hormones. 2017; 16(4): 351–61. doi.org/10.14310/horm.2002.1755
6.    Magee C, Grieve DJ, Watson CJ, Brazil DP. Diabetic Nephropathy: a Tangled Web to Unweave. Cardiovasc Drugs Ther. 2017; 31(5–6): 579–92. doi.org/10.1007/s10557-017-6755-9
7.    Papadopoulou-Marketou N, Paschou SA, Marketos N, Adamidi S, Adamidis S, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes. Minerva Med. 2018; 109(3): 218–28. doi.org/10.23736/S0026-4806.17.05496-9
8.    Tziomalos K, Athyros VG. Diabetic nephropathy: New risk factors and improvements in diagnosis. Review of Diabetic Studies. 2015; 12(1): 110–8. doi.org/10.1900/RDS.2015.12.110
9.    Kakkar M, Singh S, Behl T, Singh S, Sharma N, Hema, et al. Update on the role of angiogenesis in diabetes associated nephropathy. Research Journal of Pharmacy and Technology. 2021: 3947–54. doi.org/10.52711/0974-360X.2021.00685
10.    Kn L, Najafian B, Alpers CE, Fogo AB. Clinicopathological Features of Diabetic Nephropathy Pathology of Human Diabetic Nephropathy. Contrib Nephrol Basel, Karger. 2011;170:36–47.
11.    Cao Z, Cooper ME. Pathogenesis of diabetic nephropathy. J Diabetes Investig. 2011; 2(4): 243–7. doi.org/10.1111/j.2040-1124.2011.00131.x
12.    Chen C, Gong W, Li C, Xiong F, Wang S, Huang J, et al. Sphingosine kinase 1 mediates AGEs-induced fibronectin upregulation in diabetic nephropathy. Oncotarget. 2017;8(45):78660–76. doi.org/10.18632/oncotarget.20205
13.    Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci. 2013; 124(3): 139–52. doi.org/10.1042/CS20120198
14.    Shumway JT, Gambert SR. Diabetic nephropathy-pathophysiology and management. 2003; 257–64. doi.org/10.1023/a:1023244829975
15.    Research J, Vadivelan RE. Oxidative Stress Induced Diabetic Nephropathy. J Pharmacology and Pharmacodynamics. 2010; 2(5): 321–3.doi.org/10.5958 2321-5836
16.    Lim AKH, Tesch GH. Inflammation in diabetic nephropathy. Mediators Inflamm. 2012; 2012. doi.org/10.1155/2012/146154
17.    Duran-Salgado MB. Diabetic nephropathy and inflammation. World J Diabetes. 2014; 5(3): 393. doi.org/10.4239/wjd.v5.i3.393
18.    Puchałowicz K, Rać ME. The Multifunctionality of CD36 in Diabetes Mellitus and Its Complications-Update in Pathogenesis, Treatment and Monitoring. Cells. 2020; 9(8). doi.org/10.3390/cells9081877
19.    Thomas MC, Jandeleit-Dahm KA, Tikellis C. The renoprotective actions of peroxisome proliferator-activated receptors agonists in diabetes. PPAR Res. 2012; 2012. doi.org/10.1155/2012/456529
20.    Kermode-Scott B. Meta-analysis confirms raised risk of bladder cancer from pioglitazone. BMJ. 2012; 345(July): 4541. doi.org/10.1136/bmj.e4541
21.    Bhanushali S, Bhanushali S, Modh K, Anand I, Patel C, Dave J. Novel Approaches for Diabetes Mellitus: A Review. Vol. 2, Research J. Pharmacology and Pharmacodynamics. 2010. doi.org/10.5958 2321-5836
22.    Hocher B, Reichetzeder C, Alter ML. Renal and cardiac effects of DPP-4 inhibitors - from preclinical development to clinical research. Kidney Blood Press Res. 2012; 36(1): 65–84. doi.org/10.1159/000339028
23.    Groop PH, Cooper ME, Perkovic V, Emser A, Woerle HJ, Von Eynatten M. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care. 2013; 36(11): 3460–8. doi.org/10.2337/dc13-0323
24.    Alter ML, Ott IM, Von Websky K, Tsuprykov O, Sharkovska Y, Krause-Relle K, et al. DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy. Kidney Blood Press Res. 2012;36(1):119–30. doi.org/10.1159/000341487
25.    Mann JFE, Anderson C, Gao P, Gerstein HC, Boehm M, Rydén L, et al. Dual inhibition of the renin-angiotensin system in high-risk diabetes and risk for stroke and other outcomes: Results of the ONTARGET trial. J Hypertens. 2013; 31(2): 414–21. doi.org/10.1097/HJH.0b013e32835bf7b0
26.    Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy a randomized clinical trial. JAMA - Journal of the American Medical Association. 2015; 314(9): 884–94. doi.org/10.1001/jama.2015.10081
27.    Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W, et al. Combined Angiotensin Inhibition for the Treatment of Diabetic Nephropathy. New England Journal of Medicine. 2013; 369(20): 1892–903. doi.org/10.1056/NEJMoa1303154
28.    Zhou Y, Qi C, Li S, Shao X, Mou S, Ni Z. Diabetic nephropathy can be treated with calcium dobesilate by alleviating the chronic inflammatory state and improving endothelial cell function. Cellular Physiology and Biochemistry. 2018;51(3):1119–33. doi.org/10.1159/000495491
29.    Tan SMQ, Chiew Y, Ahmad B, Kadir KA. Tocotrienol-rich vitamin E from palm oil (Tocovid) and its effects in diabetes and diabetic nephropathy: A pilot phase II clinical trial. Nutrients. 2018; 10(9). doi.org/10.3390/nu10091315
30.    Samsu N, Soeharto S, Rifai M, Rudijanto A. The superiority of rosmarinic acid over vitamin e in preventing development and inhibiting progression of diabetic nephropathy in rats. Asian Journal of Pharmaceutical Research. 2020; 10(3): 131. doi.org/10.5958/2231-5691.2020.00025.8
31.    Singh V, Bushettii SS, Appala Raju S, Ahmad R, Singh M, Bisht A. Microemulsions as promising delivery systems: A Review. Indian Journal of Pharmaceutical Education and Research. 2011 Oct;45(4):392–401. doi.org/10.5958/2231-5691.2019.00015.7
32.    Nikam NR, Patil PR, Vakhariya RR, Magdum CS. Liposomes: A Novel Drug Delivery System: An Overview. Asian Journal of Pharmaceutical Research. 2020; 10(1): 23. doi.org/10.5958/2231-5691.2020.00005.2
33.    Ray A. Liposome in Drug delivery system. Asian J Res Pharm Sci [Internet]. 2012; 2: 41–4. Available from: www.asianpharmaonline.org. doi.org/10.52711/2231-5659
34.    Pagar KR, Darekar AB. Nanoemulsion: A new concept of Delivery System. Asian Journal of Research in Pharmaceutical Science. 2019; 9(1): 39. doi.org/10.5958/2231-5659.2019.00006.7
35.    Chen D, Han S, Zhu Y, Hu F, Wei Y, Wang G. Kidney-targeted drug delivery via rhein-loaded polyethyleneglycol-co-polycaprolactone-co-polyethylenimine nanoparticles for diabetic nephropathy therapy. Int J Nanomedicine. 2018; 13: 3507–27. doi.org/10.2147/IJN.S166445
36.    Indalkar YR, Pimpodkar N V., Godase AS, Gaikwad PS. A Compressive Review on the Study of Nanotechnology for Herbal Drugs. Asian Journal of Pharmaceutical Research. 2015; 5(4): 203. doi.org/10.5958/2231-5691.2015.00031.3
37.    Wang H, Cui H, Lin L, Ji Y, Ni Q, Li J, et al. The effects of a hirudin/liposome complex on a diabetic nephropathy rat model. BMC Complement Altern Med. 2019;19(1):1–10. doi.org/10.1186/s12906-019-2531-7
38.    Yang S, Lin H, Yang H. Study of the target effect of mannose modified liposomes on diabetic rat kidney based on GLUT. J Drug Deliv Sci Technol. 2020; 55: 101409. doi.org/10.1016/j.jddst.2019.101409
39.    Yuan Z xiang, Jia L, Lim LY, Lin J chun, Shu G, Zhao L, et al. Renal-targeted delivery of triptolide by entrapment in pegylated TRX-20-modified liposomes. Int J Nanomedicine. 2017;12:5673–86. doi.org/10.2147/IJN.S141095
40.    Choi CHJ, Zuckerman JE, Webster P, Davis ME. Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci USA. 2011; 108(16): 6656–61. doi.org/10.1073/pnas.1103573108
41.    Yu H, Jin F, Liu D, Shu G, Wang X, Qi J, et al. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics. 2020; 10(5): 2342–57. doi.org/10.7150/thno.40395
42.    Virna MMG, Marcela AM, Diego AC, María JS, Miguel WF, Walter M.Polymeric nanomicelles loaded with anandamide and their renal effects as a therapeutic alternative for hypertension treatment by passive targeting. Pharmaceutics. 2023; 15(176). doi.org/10.3390/pharmaceutics15010176
43.    Guo L, Luo S, Du Z, Zhou M, Li P, Fu Y, et al. Targeted delivery of celastrol to mesangial cells is effective against mesangioproliferative glomerulonephritis. Nat Commun. 2017; 1; 8(1). doi.org/10.1038/s41467-017-00834-8
44.    Visweswaran GRR, Gholizadeh S, Ruiters MHJ, Molema G, Kok RJ, Kamps JAAM. Targeting rapamycin to podocytes using a vascular cell adhesion molecule-1 (VCAM-1)-harnessed SAINT-based lipid carrier system. PLoS One. 2015; 25; 10(9). doi.org/10.1371/journal.pone.0138870
45.    Bruni R, Possenti P, Bordignon C, Li M, Ordanini S, Messa P, et al. Ultrasmall polymeric nanocarriers for drug delivery to podocytes in kidney glomerulus. Journal of Controlled Release. 2017; 6(10): 94–107. doi.org/10.1016/j.jconrel.2017.04.005
46.    Oroojalian F, Rezayan AH, Mehrnejad F, Nia AH, Shier WT, Abnous K, et al. Efficient megalin targeted delivery to renal proximal tubular cells mediated by modified-polymyxin B-polyethylenimine based nano-gene-carriers. Materials Science and Engineering C. 2017; 10(1): 770–82. doi.org/10.1016/j.msec.2017.05.068
47.    Oroojalian F, Charbgoo F, Hashemi M, Amani A, Yazdian-Robati R, Mokhtarzadeh A, et al. Recent advances in nanotechnology-based drug delivery systems for the kidney. Vol. 321, Journal of Controlled Release. Elsevier B.V. 2020: 442–62. doi.org/10.1016/j.jconrel.2020.02.027
48.    He J, Chen H, Zhou W, Chen M, Yao Y, Zhang Z, et al. Kidney targeted delivery of asiatic acid using a FITC labeled renal tubular-targeting peptide modified PLGA-PEG system. Int J Pharm. 2020;584. doi.org/10.1016/j.ijpharm.2020.119455
49.    Qiao H, Sun M, Su Z, Xie Y, Chen M, Zong L, et al. Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan. Biomaterials. 2014; 35(25): 7157–71. doi.org/10.1016/j.biomaterials.2014.04.106
50.    Yuan ZX, Wu XJ, Mo J, Wang YL, Xu CQ, Lim LY. Renal targeted delivery of triptolide by conjugation to the fragment peptide of human serum albumin. European Journal of Pharmaceutics and Biopharmaceutics. 2015; 94: 363–71. doi.org/10.1016/j.ejpb.2015.06.012
51.    Wischnjow A, Sarko D, Janzer M, Kaufman C, Beijer B, Brings S, et al. Renal Targeting: Peptide-Based Drug Delivery to Proximal Tubule Cells. Bioconjug Chem. 2016; 27(4): 1050–7. doi.org/10.1021/acs.bioconjchem.6b00057
52.    He XK, Yuan ZX, Wu XJ, Xu CQ, Li W yu. Low molecular weight hydroxyethyl chitosan-prednisolone conjugate for renal targeting therapy: Synthesis, characterization and in vivo studies. Theranostics. 2012; 2(11): 1054–63. doi.org/10.7150/thno.3705
53.    Hu JB, Li SJ, Kang XQ, Qi J, Wu JH, Wang XJ, et al. CD44-targeted hyaluronic acid-curcumin prodrug protects renal tubular epithelial cell survival from oxidative stress damage. CarbohydrPolym. 2018; 193: 268–80. doi.org/10.1016/j.carbpol.2018.04.011
54.    Williams RM, Shah J, Ng BD, Minton DR, Gudas LJ, Park CY, et al. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. Nano Lett. 2015 Apr 8;15(4):2358–64. doi.org/10.1021/nl504610d
55.    Wang B, Jha JC, Hagiwara S, Mcclelland AD, Jandeleit-Dahm K, Thomas MC, et al. Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int. 2014; 85(2): 352–61. doi.org/10.1038/ki.2013.372
56.    Liu L, Wang Y, Yan R, Liang L, Zhou X, Liu H, et al. BMP-7 inhibits renal fibrosis in diabetic nephropathy via miR-21 downregulation. Life Sci. 2019; 238: 116957. doi.org/10.1016/j.lfs.2019.116957
57.    Ge X, Xi L, Wang Q, Li H, Xia L, Cang Z, et al. Circular RNA Circ_0000064 promotes the proliferation and fibrosis of mesangial cells via miR-143 in diabetic nephropathy. Gene. 2020; 758(June): 144952. doi.org/10.1016/j.gene.2020.144952
58.    Liu R, Zhang M, Ge Y. Circular RNA HIPK3 exacerbates diabetic nephropathy and promotes proliferation by sponging miR-185. Gene. 2021; 765(May 2020). doi.org/10.1016/j.gene.2020.145065
59.    Li Z, Yu Z, Meng X, Yu P. LncRNA LINC00968 accelerates the proliferation and fibrosis of diabetic nephropathy by epigenetically repressing p21 via recruiting EZH2. BiochemBiophys Res Commun. 2018; 504(2): 499–504. doi.org/10.1016/j.bbrc.2018.08.048
60.    Zhang YY, Tang PMK, Tang PCT, Xiao J, Huang XR, Yu C, et al. LRNA9884, a novel smad 3-dependent long noncoding RNA, promotes diabetic kidney injury in db/db mice via enhancing MCP-1-dependent renal inflammation. Diabetes. 2019; 68(7): 1485–98. doi.org/10.2337/db18-1075
61.    Voelker J, Berg PH, Sheetz M, Duffin K, Shen T, Moser B, et al. Anti-TGF-b1 antibody therapy in patients with diabetic nephropathy. Journal of the American Society of Nephrology. 2017;28(3):953–62. doi.org/10.1681/ASN.2015111230
62.    Zeng M, Liu J, Yang W, Zhang S, Liu F, Dong Z, et al. Multiple-microarray analysis for identification of hub genes involved in tubulointerstial injury in diabetic nephropathy. J Cell Physiol. 2019; 234(9): 16447–62. doi.org/10.1002/jcp.28313
63.    Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of Diabetic kidney disease. Journal of Clinical Investigation. 2014; 124(6): 2333–40. doi.org/10.1172/JCI72271
64.    Wang W, Sun W, Cheng Y, Xu Z, Cai L. Role of sirtuin-1 in diabetic nephropathy. J Mol Med. 2019; 97: 291–309. doi.org/10.1007/s00109-019-01743-7
65.    Du B, Yu M, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater. 2018; 3(10): 358–74. doi.org/10.1038/s41578-018-0038-3
66.    Patil PM, Chaudhari PD, Sahu M, Duragkar NJ. Review Article on Gene Therapy. Research J Pharmacology and Pharmacodynamics. 2012; 4(2): 77–83. doi.org/10.5958 2321-5836
67.    Dutta S, Ray B, Raut S, Sahoo CK. Nonviral gene therapy: Technology and application. Research Journal of Science and Technology. 2021; 13(1): 13–22. doi.org/10.5958/2349-2988.2021.00003.6
68.    Subhan A, Torchilin VP. Efficient nanocarriers of siRNA therapeutics for. Translational Research. 2019; 214: 62–91. doi.org/10.1016/j.trsl.2019.07.006

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available