Author(s):
Fadhel Ibrahem Aljabari, Haider Abdulkareem Almashhadani, Marowah H. Jehad, Mustafa M. Kadhim
Email(s):
h_r200690@yahoo.com , haideralmashhdani@alrasheedcol.edu.iq
DOI:
10.52711/0974-360X.2023.00122
Address:
Fadhel Ibrahem Aljabari 1, Haider Abdulkareem Almashhadani2,5*, Marowah H. Jehad3, Mustafa M. Kadhim4,6
1Department of Dentistry, Dijlah University College, Baghdad, Iraq.
2Department of Dentistry, Al-Rasheed University College, Baghdad, Iraq.
3Department of Dentistry, Al-Farabi University College, Baghdad, Iraq.
4College of Dentistry, Al- Farahidi University, Baghdad, Iraq.
5College of technical engineering, The Islamic University, Najaf, Iraq.
6Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq.
*Corresponding Author
Published In:
Volume - 16,
Issue - 2,
Year - 2023
ABSTRACT:
Metronidazole-MIPs were prepared by using (MDZ) as the template as well as allylchloride (AYC) or allylbromide (AYB) as monomer, used (TMPTA) tri-methylol propane tri-acrylate or ethylene glycol di-methyl acrylate (EGDMA) as cross-linker and initiator used (BP) benzyl peroxide. By using different plasticizers (di butyl Phthalate (DBPH), Nitrobenzene (NB), oleic acid (OA) and paraffin) for MDZ-MIP1 and (Di-butyl sebecate (DBS), Di-methyl acrylate (DMA), Tributylphosphate(TBP) and Tris(ethylhexyl phosphate (TEHP) ) for MDZ-MIP2. Membranes of MIPs were prepared in PVC matrix. The characterizations of each electrode were determined The Slope range from (55.083 - 43.711) mV/decade, Limit of Detection (8 X 10 -4- 2 X 10-6) and Linearity range of electrodes MIPs from (1 X 10-5 - 1 X 10 -1). Stable Signe of electrode pH from (2.5-9) and study the selectivity with additives of drugs synthesis (Glucose, Calcium stearate, sodium benzoate and benzoic acid) demonstrate strong selectivity.
Cite this article:
Fadhel Ibrahem Aljabari, Haider Abdulkareem Almashhadani, Marowah H. Jehad, Mustafa M. Kadhim. Synthesis and Characterization of Molecularly Imprinted Polymers for Metronidazole by using Allyl Chloride and Allyl Bromide as Monomers. Research Journal of Pharmacy and Technology 2023; 16(2):715-0. doi: 10.52711/0974-360X.2023.00122
Cite(Electronic):
Fadhel Ibrahem Aljabari, Haider Abdulkareem Almashhadani, Marowah H. Jehad, Mustafa M. Kadhim. Synthesis and Characterization of Molecularly Imprinted Polymers for Metronidazole by using Allyl Chloride and Allyl Bromide as Monomers. Research Journal of Pharmacy and Technology 2023; 16(2):715-0. doi: 10.52711/0974-360X.2023.00122 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-2-41
REFERENCES:
1. Adegoke, O.A. and O.E. Umoh, A new approach to the spectrophotometric determination of metronidazole and tinidazole using p-dimethylaminobenzaldehyde. Acta Pharmaceutica, 2009. 59(4): p. 407-419. http://dx.doi.org/10.2478/v10007-009-0039-2
2. Knox, R., R. Knight, and D. Edwards, Interaction of nitroimidazole drugs with DNA in vitro: structure-activity relationships. British journal of cancer, 1981. 44(5): p. 741-745.https://dx.doi.org/10.1038/bjc.1981.261
3. Lamp, K.C., et al., Pharmacokinetics and pharmacodynamics of the nitroimidazole antimicrobials. Clinical pharmacokinetics, 1999. 36(5): p. 353-373.https://doi.org/10.2165/00003088-199936050-00004
4. Loft, S., et al., Characterization of metronidazole metabolism by human liver microsomes. Biochemical pharmacology, 1991. 41(8): p. 1127-1134. https://doi.org/10.1016/0006-2952(91)90650-t
5. Goodman, L.S., Goodman and Gilman's the pharmacological basis of therapeutics. Vol. 1549. 1996: McGraw-Hill New York.
6. Manohara, Y., et al., Novel and rapid estimation of metronidazole in tablets. Der Pharma Chem, 2010. 2(3): p. 148-51.
7. Jejurkar, L. and A. Jejurkar, HPLC method of detection for 5ASA in pure and in tablets. Journal of Pharmaceutical Science and Technology, 2012. 4: p. 792-797.
8. Mansour, O., D. Nashed, and A.A. Sakur, Determination of clopidogrel bisulphate using drug selective membranes. Research Journal of Pharmacy and Technology, 2018. 11(5): p. 2017-2021. https://doi.org/10.5958/0974-360X.2018.00374.8
9. Aljabari, F.I. and Y.K. Al-Bayati, Estimation of Trimethoprim by using a New Selective Electrodes dependent on Molecularly Imprinted Polymers. Egyptian Journal of Chemistry, 2021. 64(10): p. 6089-6096. https://dx.doi.org/10.21608/ejchem.2021.72564.3617
10. Simões, S.S., et al., Flow injection determination of metronidazole through spectrophotometric measurement of the nitrite ion produced upon alkaline hydrolysis. Journal of the Brazilian Chemical Society, 2006. 17(3): p. 609-613. https://doi.org/10.1590/S0103-50532006000300028
11. Yu, M., et al., In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties. European Journal of Pharmaceutics and Biopharmaceutics, 2014. 88(1): p. 92-103. https://doi.org/10.1016/j.ejpb.2014.03.019
12. Palomeque, M., et al., Flow injection biamperometric determination of metronidazole with on-line photodegradation. Analytica chimica acta, 1999. 401(1-2): p. 229-236. http://dx.doi.org/10.1016/S0003-2670(99)00479-1
13. Joshi, D. and A. Joshi, Polarographic determination of metronidazole and chloramphenicol. Journal of the Indian Chemical Society, 1997. 74(7).. http://dx.doi.org/10.5281/zenodo.5908860
14. Sindhu, S.K., Y. Singh, and R. Singh, Potentiometric Determination of Heavy Metals Concentrations in Trace by Using Calixarene as Electroactive Materials. Asian Journal of Research in Chemistry, 2010. 3(1): p. 229-000.
15. Sakur, A.A., et al., Determination of prasugrel hydrochloride in bulk and pharmaceutical formulation using new ion selective electrodes. Research Journal of Pharmacy and Technology, 2018. 11(2): p. 631-636. https://doi.org/10.5958/0974-360X.2018.00118.X
16. Ijaz, A. and A. Raza, Spectrophotometric determination of metronidazole in pharmaceutical pure and dosage forms using p-benzoquinone. Journal of the Iranian Chemical Society, 2005. 2(3): p. 197-202. https://doi.org/10.1007/BF03245922
17. Sastry, C., M. Aruna, and A.R.M. Rao, Spectrophotometric determination of some antiamoebic and anthelmintic drugs with metol and chromium (VI). Talanta, 1988. 35(1): p. 23-26. https://doi.org/10.1016/0039-9140(88)80006-7
18. Dinesh, N.D., P. Nagaraja, and K.S. RANGAPPA, A sensitive spectrophotometric assay for tinidazole and metronidazole using a Pd-C and formic acid reduction system. Turkish Journal of Chemistry, 2004. 28(3): p. 335-344.
19. Siddappa, K., et al., Spectrophotometric determination of metronidazole through Schiff's base system using vanillin and PDAB reagents in pharmaceutical preparations. Eclética Química, 2008. 33(4): p. 41-46. https://doi.org/10.1590/S0100-46702008000400005
20. Abu Zuhri, A.Z., S.I. Al-khalil, and M.S. Suleiman, Electrochemical reduction of metronidazole and its determination in pharmaceutical dosage forms by DC polarography. Analytical Letters, 1986. 19(3-4): p. 453-459. https://doi.org/10.1080/00032718608064510
21. El-Sayed, G., Polarographic determination of metronidazole in pharmaceutical formulations and urine. Microchemical journal, 1997. 55(1): p. 110-114. https://doi.org/10.1016/j.mset.2021.06.001
22. Ahmed, B. and J. Onah, Colorimetric determination of chloramphenicol and metronidazole in pharmaceutical formulations after Schiff-base formation with vanillin and anisaldehyde. Global Journal of Pure and Applied Sciences, 2003. 9(3): p. 359-364. https://doi.org/10.4314/gjpas.v9i3.15940
23. Rani, S. and G. Singh, Novel Polymeric Membrane Sensor for the Selective Determination of Citrazine. Asian Journal of Research in Chemistry, 2012. 5(10): p. 1210-1215.
24. Maliwal, D., et al., Simultaneous spectrophotometric estimation of metronidazole and norfloxacin in combined tablet formulations using hydrotropy. Research Journal of Pharmacy and Technology, 2008. 1(4): p. 357-361.
25. Guo, T.-Y., et al., Chitosan beads as molecularly imprinted polymer matrix for selective separation of proteins. Biomaterials, 2005. 26(28): p. 5737-5745. https://doi.org/10.1016/j.biomaterials.2005.02.017
26. Whitcombe, M.J., C. Alexander, and E.N. Vulfson, Smart polymers for the food industry. Trends in Food Science & Technology, 1997. 8(5): p. 140-145.
27. Al-Bayati, Y.K. and F.I. Aljabari, Synthesis of ibuprofen-molecularly imprinted polymers used as sensors to determine drug in pharmaceutical preparations. Asian Journal of Chemistry, 2016. 28(6): p. 1376.
28. Al-Bayati, Y.K. and F.I. Aljabari, Mefenamic Acid Selective Membranes Sensor and Its Application to pharmaceutical Analysis. Baghdad Science Journal, 2016. 13(4).. https://doi.org/10.21123/bsj.2016.13.4.0829
29. Al-bayati, Y.K. and F.I. Aljabari, Construction of New Ion Selective Electrodes for Determination Ibuprofen and Their Application in Pharmaceutical Samples. 2015, IJRPC.
30. Ramström, O. and K. Mosbach, Synthesis and catalysis by molecularly imprinted materials. Current Opinion in Chemical Biology, 1999. 3(6): p. 759-764. https://doi.org/10.1016/s1367-5931(99)00037-x
31. Thulluru, A., et al., Optimization of HPMC K100M and sodium alginate ratio in Metronidazole Floating Tablets for the Effective Eradication of Helicobacter pylori. Asian Journal of Pharmacy and Technology, 2019. 9(3): p. 195-203. http://dx.doi.org/10.5958/2231-5713.2019.00033.3
32. Tiwari, G., et al., Simultaneous estimation of metronidazole and amoxicillin in synthetic mixture by ultraviolet spectroscopy. Asian Journal of Research in Chemistry, 2008. 1(2): p. 91-94.
33. Samarth, N.B., et al., A historical perspective and the development of molecular imprinting polymer-A review. Chem. Int, 2015. 4: p. 202-210.
34. Ramalakshmi, N. and B. Marichamy, Sensing of Lead and Copper Metal Ions by Substituted N-Methyl Piperazine Compound on Glassy Carbon Electrode. Asian Journal of Research in Chemistry, 2011. 4(12): p. 1920-1927.
35. Ulmer-Scholle, D.S., et al., A color guide to the petrography of sandstones, siltstones, shales and associated rocks. Vol. 109. 2014: American Association of Petroleum Geologists Tulsa, OK, USA.
36. Sivasankari, G., S. Boobalan, and D. Deepa, Dopamine sensor by Gold Nanoparticles Absorbed Redox behaving metal Complex. Asian Journal of Pharmacy and Technology, 2018. 8(2): p. 83-87. https://doi.org/10.5958/2231-5713.2018.00013.2
37. AlMashhadani, H.A., Synthesis of a CoO-ZnO nanocomposite and its study as a corrosion protection coating for stainless steel in saline solution. International Journal of Corrosion and Scale Inhibition, 2021. 10(3): p. 1294-1306. http://dx.doi.org/10.17675/2305-6894-2021-10-3-26
38. Almashhadani, H. and K. Alsaadie, Corrosion Protection of Carbon Steel in seawater by alumina nanoparticles with poly (acrylic acid) as charging agent. Moroccan Journal of Chemistry, 2018. 6(3): p. 6-3 (2018) 455-465. https://doi.org/10.48317/IMIST.PRSM/morjchem-v6i3.6214
39. Sebaiy, M.M., et al., Rapid RP-HPLC method for simultaneous estimation of sparfloxacin, gatifloxacin, metronidazole and tinidazole. Asian Journal of Pharmaceutical Research, 2011. 1(4): p. 119-125.
40. Almashhadani, H.A., et al., Corrosion inhibition behavior of expired diclofenac Sodium drug for Al 6061 alloy in aqueous media: Electrochemical, morphological, and theoretical investigations. Journal of Molecular Liquids, 2021. 343: p. 117656. https://doi.org/10.1016/j.molliq.2021.117656
41. AlMashhadani, H.A. and K.A. saleh, Electro-polymerization of poly Eugenol on Ti and Ti alloy dental implant treatment by micro arc oxidation using as Anti-corrosion and Anti-microbial. Research Journal of Pharmacy and Technology, 2020. 13(10): p. 4687-4696. https://doi.org/10.5958/0974-360X.2020.00825.2
42. Naji, A.M., I.Y. Mohammed, and S.A. AL-BAYATY, Mechanical and Thermal Degradation Kinetic Study of Basalt Filled Polyvinyl Chloride Composite Material. Egyptian Journal of Chemistry, 2021. 64(2): p. 893-901.https://dx.doi.org/10.21608/ejchem.2020.35343.2739