Author(s):
Hana Bajes, Sawsan Oran, Yasser Bustanji
Email(s):
Email ID Not Available
DOI:
10.52711/0974-360X.2023.00183
Address:
Hana Bajes1,2*, Sawsan Oran1, Yasser Bustanji3,4
1Department of Biological Sciences, The University of Jordan, Amman, Jordan.
2Science Department, Atlantic Cape Community College, 08330, Mays Landing, NJ, United States.
3Department of Basic Medical Sciences, College of Medicine,
University of Sharjah, Sharjah, 27272, United Arab Emirates.
4School of Pharmacy, The University of Jordan, Amman, Jordan.
*Corresponding Author
Published In:
Volume - 16,
Issue - 3,
Year - 2023
ABSTRACT:
Essential oils (EOs) of medicinal plants became a matter of interest in scientific research because of their potential of utilization for several therapeutic purposes, The EO of Thymus capitatus has been traditionally used in treatment of several conditions related to skin, muscles, and respiratory system, to reduce fever, and to stimulate menstrual flow in addition to its anti-bacterial properties. To chemically analyze the components of the EO of Thymus capitatus and to evaluate its anti-cancerous and anti-oxidant activity on breast cancer cells (T47D), colorectal adenocarcinoma cells (CACO2), and normal human fibroblasts (MRC5). The EOs were extracted by hydro-distillation. Gas chromatography and mass spectrometry were used to analyze the extracts. Cell viability was assessed using three different assays; MTT, trypan blue and neutral red assays. Antioxidant activity was assessed using DPPH scavenging assay. Cell apoptosis was assessed using DNA fragmentation tests and Annexin V-propidium iodide assay. Morphological analysis of cells was assessed using light microscopy and DAPI staining. Twenty-two different compounds were identified in the essential oil of T. capitatus leaves including Thymol (44.34%) and Carvacrol (38.89%) in addition to 20 minor components. The oil extract exhibited a significant inhibitory action on the three cell lines. The viability assays showed significantly higher (p<0.05) IC50 in the fibroblast cell line than the other two cell lines. The selectivity index was higher in T47D cell line compared to CACO II cell line. For apoptosis assessment, DNA fragmentation in T47D cells was significantly correlated with the extract concentration. The membrane polarity was disrupted in an increasing manner (15.60±1.13, 35.73±1.69 and 46.53±2.51) as the extract concentration (20.22, 40.45, and 80.9µg/ml, respectively) increased. On the cellular level, morphological changes including cell shrinkage, chromatin condensation and nuclear fragmentation in addition to marginalization of chromatin, vacuolization of cytoplasm and formation of micronuclei was clearly visible. The extract showed high anti-oxidant activity with an IC50 of 6.4µg/ml. Anti-oxidant activity was dose-dependent; double IC50 (80.9µg/ml) exhibited the highest antioxidant activity whereas the lowest antioxidant activity was observed for the ½ IC50 (20.225µg/ml). The oil extract exerted an inhibitory action lipid peroxidation. Thymus capitatus EO is a potential anti-oxidant and anti-neoplastic agent against breast and colon carcinomas due to its high selectivity for cancer cells compared to normal cell lines.
Cite this article:
Hana Bajes, Sawsan Oran, Yasser Bustanji. Phytochemical Analysis, In vitro Assessment of Antioxidant Properties and Cytotoxic Potential of Thymus capitatus Essential Oil. Research Journal of Pharmacy and Technology 2023; 16(3):1100-8. doi: 10.52711/0974-360X.2023.00183
Cite(Electronic):
Hana Bajes, Sawsan Oran, Yasser Bustanji. Phytochemical Analysis, In vitro Assessment of Antioxidant Properties and Cytotoxic Potential of Thymus capitatus Essential Oil. Research Journal of Pharmacy and Technology 2023; 16(3):1100-8. doi: 10.52711/0974-360X.2023.00183 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-3-19
REFERENCES:
1. Bajes HR, Oran SA, Al-Dujaili EAS. Investigating the Anti-Viral and Anti-Bacterial activities of Jordanian Medicinal plants: A narrative review. Res J Pharm Technol. 2022/01/25 2022:127-136. doi:10.52711/0974-360x.2022.00021
2. Bajes HR, Almasri I, Bustanj Y. Plant Products and Their Inhibitory Activity Against Pancreatic Lipase. Brazilian Journal of Phramacognozy. 2020, 30 321–330
3. Younis, N., Abu-Mallouh, S., Almasri, I., Issa, A., Bustanji, Y. Pancreatic lipase inhibition by edible plants used in three middle east countries: A mini-review. Jordan Journal of Pharmaceutical Sciences, 2021, 14(2), pp. 179–188
4. Bustanji Y, Taha MO, Yousef A. and Al- Bakri AG. Berberine Potently Inhibits Protein Tyrosine Phosphatase 1B: Investigation by Docking Simulation and Experimental Validation. Journal of Enzyme Inhibition and Medicinal Chemistry 2006; 21:163-171.
5. Mohammad MK, Al-masri I, Taha MO, Al-Ghussein M, AlKhatib H, Najjar S, Bustanji Y. Olanzapine Inhibits Glycogen Synthase Kinase-3β: An Investigation by Docking Simulation and Experimental Validation. European Journal of Pharmacology, 2008, 584 185-191
6. Harb A, Bustanji Y, Abdalla S. Hypocholesterolemic effect of β-caryophyllene in rats fed cholesterol and fat enriched diet. Journal of Clinical Biochemistry and Nutrition, 2018, 62, 17-3.
7. Bustanji Y, Hudaib M, Tawaha K, Mohammad M, Almasri I, Hamid S. Oran S. In vitro Xanthine Oxidase inhibition by selected Jordanian medicinal plants. Jordan Journal of Pharmaceutical Sciences. 2011; 4:29-34
8. Yavuz DÖ, Mavis M, Ateş G, et al. Identification of potential therapeutic role of thymus capitatus essential oil using cellular imaging. Procedia Comput Sci. 2017;120:961-966. doi:10.1016/j.procs.2017.11.332
9. Bustanji Y, Mohammad M, Hudaib M, Tawaha K, Al-Masri I, AlKhatib H, Ala Issa, Alali F. Screening of Some Medicinal Plants for their Pancreatic Lipase Inhibitory Potential. Jordan Journal of Pharmaceutical Sciences. 2011; 4:81-88.
10. Harb A, Bustanji Y, Almasri I. and Abdalla S. Eugenol Reduces LDL Cholesterol and Hepatic Steatosis in Hypercholesterolemic Rats by Modulating TRPV1 Receptor. Scientific Reports, 2019, 9:14003.
11. Bajes HR, Oran SA, Bustanji YK. Chemical Composition and Antiproliferative and Antioxidant Activities of Essential Oil from Juniperus phoenicea L. Cupressaceae. Res J Pharm Technol. 2022/01/25 2022:153-159. doi:10.52711/0974-360x.2022.00025
12. Bajes HR, Oran SA, Bustanji YK. Chemical Composition and Antiproliferative and Antioxidant Activities of Methanolic Extract of Alcea setosa A. Malvaceae. Res J Pharm Technol. 2021/12/28 2021:6447-6454. doi:10.52711/0974-360x.2021.01115
13. Mohammad M, Almasri I, Tawaha K, Issa I, Al-Nadaf A, Hudaib M, AlKhatib H, Abu-Gharbieh E, Bustanji B. Antioxidant, antihyperuricemic and xanthine oxidase inhibitory activities of Hyoscyamus reticulatus. Pharmaceutical Biology. 2010, 48: 1376-1383.
14. Bustanji Y, Hudaib M, Tawaha K, Mohammad M, Almasri I, Hamid S and Oran S. In vitro Xanthine Oxidase inhibition by selected Jordanian medicinal plants. Jordan Journal of Pharmaceutical Sciences. 2011; 4:29-34
15. Kandil O, Radwan NM, Hassan AB, Amer AMM, El-Banna HA, Amer WMM. Extracts and fractions of Thymus capitatus exhibit antimicrobial activities. J Ethnopharmacol. 1994/08 1994;44(1):19-24. doi:10.1016/0378-8741(94)90094-9
16. Arras G, Grella GE. Wild thyme,Thymus capitatus, essential oil seasonal changes and antimycotic activity. J Hortic Sci. 1992/01 1992;67(2):197-202. doi:10.1080/00221589.1992.11516237
17. Bozkurt E, Atmaca H, Kisim A, Uzunoglu S, Uslu R, Karaca B. Effects of Thymus serpyllum Extract on Cell Proliferation, Apoptosis and Epigenetic Events in Human Breast Cancer Cells. Nutrition and Cancer. 2012/11 2012;64(8):1245-1250. doi:10.1080/01635581.2012.719658
18. Moualla N, Naser M. Using GC/MS to Study the Chemical Composition of Essential Oil of Thymus vulgaris L. at AL-Qadmous Area, Syria. Res J Pharm Technol. 2015;8(4)doi:10.5958/0974-360X.2015.00073.6
19. Zahi MR, Liang H, Khan A, Yuan Q. Identification of Essential Oil Components in Chinese Endemic Plant Achnatherum inebrians. Asian Journal of Research in Chemistry. 2014;7(6):576-579.
20. Motawi T, Al Ghussein M, EL-Maraghy S, Taha MO and Bustanji Y. Evaluation of Naproxen and Cromolyn Activities against Cancer Cells Viability, Proliferation, Apoptosis, p53 and Gene Expression of Survivin and Caspase-3. Journal of Enzyme Inhibition and Medicinal Chemistry. 2014, 29:153-61.
21. V. Jayashree NT. In-vitro anti-proliferative assay and cell viability activity of Baicalein using breast cancer cell line. International journal of pharmaceutical sciences and research. 2022 2018;13(3):4. doi:10.13040/IJPSR.0975-8232.9(4).1620-24
22. Ferro A, Mestre T, Carneiro P, Sahumbaiev I, Seruca R, Sanches JM. Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images. Lab Invest. 2017/03/06 2017;97(5):615-625. doi:10.1038/labinvest.2017.13
23. Sharma PR, Mondhe DM, Muthiah S, et al. Anticancer activity of an essential oil from Cymbopogon flexuosus. Chemico-Biological Interactions. 2009/05 2009;179(2-3):160-168. doi:10.1016/j.cbi.2008.12.004
24. Imraish A, Abu Thiab T, Al‐Awaida W, Al‐Ameer H, Bustanji Y, Hammad H, Alshari M, Al‐Hunaiti A. In vitro anti‐inflammatory and antioxidant activities of ZnFe2O4 and CrFe2O4 nanoparticles synthesized using Boswelliacarteri resin. Journal of Food Biochemsitry. 2021, 45(6), e13730.
25. Alhourani N, Kasabri V, Bustanji Y, Abbassi R, and Hudaib M. Potential Antiproliferative Activity and Evaluation of Essential Oil Composition of the Aerial Parts of Tamarix aphylla (L.) H. Karst.: A Wild Grown Medicinal Plant in Jordan. Evidence-Based Complementary and Alternative Medicine Volume 2018, Article ID 9363868, 7 pages. https://doi.org/10.1155/2018/9363868.
26. García-Alonso FJ, Navarro-González I, Ros G, Periago MJ. Assessment of the antioxidant properties of tomato extracts: A synergistic approach using in vitro chemical tests and cell-based assays. Acta Alimentaria. 2015/06 2015;44(2):297-303. doi:10.1556/066.2015.44.0006
27. Gad S. Alternatives to In-Vivo Studies in Toxicology. 2009.
28. Malek SNA, Phang CW, Ibrahim H, Norhanom AW, Sim KS. Phytochemical and cytotoxic investigations of Alpinia mutica rhizomes. Molecules (Basel, Switzerland). 2011;16(1):583-589. doi:10.3390/molecules16010583
29. Chandra S, Saklani S, Mathur A. Study on nutritional and phytochemical profile of seven edible food supplements of Uttarakhand (Garhwal Himalaya). Vegetos. 2021/06/25 2021;34(3):678-683. doi:10.1007/s42535-021-00241-x
30. Seresht HR, Albadry BJ, Al-mosawi AKM, Gholami O, Cheshomi H. The Cytotoxic Effects of Thymol as the Major Component of Trachyspermum ammi on Breast Cancer (MCF-7) Cells. Pharm Chem J. 2019/05/05 2019;53(2):101-107. doi:10.1007/s11094-019-01961-w
31. Panigrahi R, Glover JNM. Structural insights into DNA double-strand break signaling. Biochem J. 2021/01/13 2021;478(1):135-156. doi:10.1042/bcj20200066
32. Ozkan A, Erdogan A. A Comparative Study of the Antioxidant/Prooxidant Effects of Carvacrol and Thymol at Various Concentrations on Membrane and DNA of Parental and Drug Resistant H1299 Cells. Nat Prod Commun. 2012/12 2012;7(12):1934578X1200701. doi:10.1177/1934578x1200701201
33. Rezvanfar MA, Rezvanfar MA, Shahverdi AR, et al. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles. Toxicology and Applied Pharmacology. 2013/02 2013;266(3):356-365. doi:10.1016/j.taap.2012.11.025
34. Al-Eisawi Z, Abderrahman S, Abdelrahim Y, Al-Abbassi R, Bustanji Y. Anastatica hierochuntica Extracts: Promising, Safe and Selective Anticancer Agents The Natural Products Journal 2022, 12(1): 78-87 Article ID: e160921185898. DOI: 10.2174/2210315510999200914153725
35. Al-Eisawi Z, Abderrahman S, Al-khalaf I, Al-Abbassi R, Bustanji Y. Taraxacum officinale Extracts Exhibit Safe and Selective Anticancer Activity. The Natural Products Journal 2022, 12, Article ID: e160921187741. DOI: 10.2174/2210315510999201109202255
36. Zaïri A, Nouir S, Zarrouk A, et al. Chemical composition, Fatty acids profile and Biological properties of Thymus capitatus (L.) Hoffmanns, essential Oil. Sci Rep. 2019;9(1):20134-20134. doi:10.1038/s41598-019-56580-y
37. Bourgou S, Ksouri R, Bellila A, Skandrani I, Falleh H, Marzouk B. Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. C R Biol. 2008/01 2008;331(1):48-55. doi:10.1016/j.crvi.2007.11.001
38. Diniz do Nascimento L, Moraes AABd, Costa KSd, et al. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules. 2020;10(7):988. doi:10.3390/biom10070988
39. Su L-J, Zhang J-H, Gomez H, et al. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid Med Cell Longev. 2019;2019:5080843-5080843. doi:10.1155/2019/5080843
40. Azofeifa G, Quesada S, Pérez AM, Vaillant F, Michel A. Pasteurization of blackberry juice preserves polyphenol-dependent inhibition for lipid peroxidation and intracellular radicals. J Food Compost Anal. 2015/09 2015;42:56-62. doi:10.1016/j.jfca.2015.01.015
41. Bajes H, Al-Dujaili E. Polyphenolic-rich Fruits and Supplements Enhance Exercise Performance; General Review. 09/26 2018:2017-135.
42. Boukraa N, Ladjel S, Goudjil MB, Eddoud A, Sanori KWM. Chemical compositions, Fumigant and Repellent Activities, of Essential oils from three Indigenous medicinal plants and their mixture, against stored grain pest, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Asian Journal of Research in Chemistry. 2020;13(6):455-464. doi:10.5958/0974-4150.2020.00081.4