Author(s): Mohsen A. Sayed, Gihad A. Sayed*, Eman Abdullah M. Ali

Email(s): gihadahmed311@gmail.com

DOI: 10.52711/0974-360X.2023.00168   

Address: Mohsen A. Sayed, Gihad A. Sayed*, Eman Abdullah M. Ali
Botany and Microbiology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
*Corresponding Author

Published In:   Volume - 16,      Issue - 3,     Year - 2023


ABSTRACT:
C. albicans causes human diseases, especially in immune-compromised patients. The current study aimed to identify Candida albicans using different techniques. Dimorphism and virulence behaviour were also studied. A Candida albicans strain was firstly identified by biochemical methods using VITEK 2 Compact automated technique and chromogenically using CHROMagar differential media that differentiate between Candida spp. Based on an enzymatic reaction. Molecular identification using ITS primers was also used to confirm Candida albicans identification. Accession number of the identified C. albicans was obtained as OK104215. The enhancement of dimorphism was studied using RPMI 1640 media (Roswell Park Memorial Institute Medium), while monitoring growth at different time intervals under microscope to investigate dimorphic changes. C. albicans showed its optimum dimorphism after 36-66 hours at 37?C. HPLC analysis for the enzyme product S-adenosylmethionine (SAM) was carried out at different time intervals. By increasing time, SAM production increased until optimum production reached after 72h of incubation on RPMI 1640. After that the production of SAM began to decrease.


Cite this article:
Mohsen A. Sayed, Gihad A. Sayed*, Eman Abdullah M. Ali. Molecular Identification, Dimorphism and Virulence of C. albicans. Research Journal of Pharmacy and Technology 2023; 16(3):1007-1. doi: 10.52711/0974-360X.2023.00168

Cite(Electronic):
Mohsen A. Sayed, Gihad A. Sayed*, Eman Abdullah M. Ali. Molecular Identification, Dimorphism and Virulence of C. albicans. Research Journal of Pharmacy and Technology 2023; 16(3):1007-1. doi: 10.52711/0974-360X.2023.00168   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-3-4


REFERENCES:
1.    Badiee P. Hashemizadeh Z. Opportunistic invasive fungal infections: diagnosis & clinical management. Indian J Med Res 2014; 139(2):195-204.
2.    Vila T. Sultan AS. Montelongo-Jauregui D. Jabra-Rizk MA. Oral Candidiasis: A Disease of Opportunity. J Fungi (Basel) 2020; 6(1):15.
3.    Brissaud O. Guichoux J. Harambat J. Tandonnet O. Zaoutis T. Invasive fungal disease in PICU: epidemiology and risk factors. Ann Intensive Care 2012; 2(1):6.
4.    Arkowitz RA.  Bassilana M. Recent advances in understanding Candida albicans hyphal growth. F 1000 research 2019; 8:700.
5.    Mysyakina S. Funtikova NS. The role of sterols in morphogenetic processes and dimorphism in fungi. Microbiology 2007; 76(1):1-13.
6.    Montelongo-Jauregui D. Lopez-Ribot JL. Candida Interactions with the Oral Bacterial Microbiota. J Fungi (Basel) 2019; 4(4):122.
7.    Kim J. Lee J. Rapid method for chromatin immunoprecipitation (ChIP) assay in a dimorphic fungus, Candida albicans. J Microbiol 2020; 58(1):11-16.
8.    Nawrot U. Wlodarczyk K. Skala J. Prondo-Morarska APM. Evaluation of Candiselect 4. a chromogenic medium for yeast differentiation. Clin Microbiol Infect 2005; 11(suppl 2):715-716.
9.    Ghelardi E. Pichierri G. Castagna B. Barnini S. Tavanti A. Campa M. Efficacy of Chromogenic Candida Agar for isolation and presumptive identification of pathogenic yeast species. Clin Microbiol Infect 2008; 14:141–147.
10.    Parka J. Oha J.  Sanga H. Shresthaa B. Leeb H , Koob J. Chob S . Choib JS.  Min Leeb M. Kimb J and Gi-Ho Sunga G. Identification and Antifungal Susceptibility Profiles of Cyberlindnera fabianii in Korea. Mycobiol 2019; 47(4):449-456.
11.    Hoang MTV. Irinyi L. Chen SCA. Sorrell TC. Meyer W. Dual DNA barcoding for the molecular identification of the agents of invasive fungal infections. Front Microbiol 2019; 10: 1647.
12.    Hering D. Borja A. Jones JI. Pont D. Boets P. et al. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res. 2018; 138:182-205.
13.    Wu B. Hussain M. Zhang W. Stadler M. Liu X. Xiang M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycol 2019; 10(3):127-40.
14.    Letchuman S. Short Introduction of DNA Barcoding. Int J Res 2018; 5(4):673-86.
15.    Fajarningsih ND. Internal Transcribed Spacer (ITS) as DNA Barcoding to Identify Fungal Species: a Review. Squalene Bull  Mar Fish Post Harvest Biotech 2016; 11(2):37-44.
16.    Cheng T. Xu C. Lei L. Li C. Zhang Y. Zhou S. Barcoding the kingdom Plantae: New PCR primers for ITS regions of plants with improved universality and specificity. Mol Ecol Resour 2016; 16: 138-49.
17.    Fernandes CM. Goldman GH.  Poeta MD. Biological Roles Played by Sphingolipids in Dimorphic and Filamentous Fungi. mBio 2018; 9(3):e00642-18.
18.    Sharma J. Rosiana S. Razzaq I. Shapiro RS. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J Fungi (Basel) 2019; 5(1):17.
19.    Yoon S. Lee W.  M Kim. Kim T D. Ryu Y. Structural and functional characterization of S-adenosylmethionine (SAM) synthetase from Pichia ciferrii. Bioprocess Biosyst Eng 2012; 35:173–181.
20.    Hayashi T. Teruya T. Chaleckis R. Morigasaki S. Yanagida M. S-Adenosylmethionine Synthetase Is Required for Cell Growth, Maintenance of G0 Phase, and Termination of Quiescence in Fission Yeast. iScience 2018; 5:38-51.
21.    Liu W. Tang D. Shi R. Lian J. Huang L. Cai1 J. Xu Z. Efficient production of S-adenosyl-L-methionine from DL‐methionine in metabolic engineered Saccharomyces cerevisiae. WILEY 2019; 10:1-12.
22.    Al-Tekreeti ARA. Al-Halbosiy MMF. Dheeb BI. Hashim AJ. Al-Zuhairi AFH. Mohammad FI. Molecular identification of clinical Candida isolates by simple and randomly amplified polymorphic DNA-PCR. Arabian Journal for Science and Engineering 2018; 43:163-170.
23.    Ambaraghassi G. Dufresne PJ. Dufresne SF. Vallières É. Muñoz JF. Cuomo CA. Berkow EL. Lockhart SR. Luong ML. Identification of Candida auris by Use of the Updated Vitek 2 Yeast Identification System, Version 8.01: a Multilaboratory Evaluation Study. J Clin Microbiol 2019; 23; 57(11).
24.    Yi Q. Xiao M. Fan X. Zhang G. Yang Y. et al. Evaluation of Autof MS 1000 and Vitek MS MALDI-TOF MS System in Identification of Closely-Related Yeasts Causing Invasive Fungal Diseases. Front Cell Infect Microbiol 2021; 18;11:628828.
25.    Bellanger A. Gbaguidi-Haore H. Liapis E. Scherer E. Millon L. Rapid identification of Candida sp. by MALDI-TOF mass spectrometry subsequent to short-term incubation on a solid medium. APMIS 2019; 127(4):217-221.
26.    Sankari SL. Mahalakshmi K. Kumar VN. Chromogenic medium versus PCR-RFLP in the speciation of Candida: a comparative study. BMC Res Notes 2019; 12(1):681.
27.    Patil A. Boparai NK. Shankargouda SB. Doddamani MH. Vora A. Dave  T. Candida dubliniensis: The New Culprit on the Block Causing Denture Stomatitis? An In Vivo Study. J Contemp Dent Pract 2021; 1;22(5):517-521.
28.    Tha TP. Gopinath P. Differentiation of Candida dubliniensis on CHROM agar and Pal’s agar. Research J. Pharm. and Tech 2016; 9(12):2150-2154.
29.    Hidalgo A. Melo A. Romero F. Hidalgo V. Villanueva J. Fonseca-Salamanca F. DNA extraction in Echinococcus granulosus and Taenia spp. eggs in dogs stool samples applying thermal shock. Exp Parasitol; 2018. 186:10-16.
30.    Korabeena M. The variability in the fungal ribosomal DNA (ITS1, ITS2, and 5.8 r RNA gene): Its biological meaning and application in medical mycology. In: Mendez-Vilas A, editor. Communicating Current Research and Educational Topics and Trends in Appplied Microbiology; 2007. p. 783-787.
31.    Divya D.  Rishad KS.  Arjunan S.  Gopinath LR and Merlin Christy P. ITS - PCR Based Molecular Identification of Fungi Associated With Piper nigrum And Its Growth Sensitivity Against Pseudomonas fluorescens. Int J of interdisci res and reves 2013; 1(3):26-33.
32.    Nawan.  Septi. Handayani. Molecular identification of Streptomyces sp. isolated from peat land of Palangka Raya, Kalimantan Tengah using 16S rRNA gene sequences analysis. Research Journal of Pharmacy and Technology. 2021; 14(12):6639-4.
33.    Kadry AA. El-Ganiny AM , El-Baz AM. Comparison of methods used in identification of Candida albicans. Research J. Pharm. and Tech. 2018; 11(3): 1164-1168.
34.    Altschul SF. Madden TL. Schäffer AA.  Zhang J. Zhang Z.  Miller W. Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 1; 25(17):3389-402.
35.    Dhanjal DS. Chopra C. Anand A.  Chopra RS. Accessing the Microbial Diversity of Sugarcane Fields from Gujjarwal Village, Ludhiana and their Molecular Identification. Research J. Pharm. and Tech 2017; 10(10):3439-3442
36.    Shree JK. Krishnaveni C. Isolation, Identification and Molecular Characterization of Endophytic Fungi from the leaves of Coelogyne species, and their role as an Antimicrobial agent. Research Journal of Pharmacy and Technology. 2021; 14(11):5613-7.
37.    Leney-Greene MA. Boddapati AK. Su HC. Cantor JR. Lenardo MJ. Human Plasma-like Medium Improves T Lymphocyte Activation. iScience 2020; 23(1):100759.
38.    Uribe B. González O.  Ourliac-Garnier I. Le Pape P. Ba BB.  Alonso RM. Gaudin K. Determination of antifungal caspofungin in RPMI-1640 cell culture medium by column-switching HPLC-FLD. J Pharm Biomed Anal 2020; 5;188:113366.
39.    Borthwick KAJ. Coakley WT. McDonnell MB. Nowotny H.  Benes E, Gröschl M. Development of a novel compact sonicator for cell disruption. J Microbiol Methods 2005; 60(2):207-16.
40.    Murugan S. Janardhan CHU. Babu MN. RP-HPLC Method for Simultaneous Estimation of Albendazole and Niclosamide in Oral Suspension for Veterinary Use. Research J. Pharm. and Tech. 9(1): Jan., 2016; Page 27-32.
41.    Agrahari MV. Bajpai. Nanda S. Essential Concepts of Mobile Phase Selection for Reversed Phase HPLC. Research J. Pharm. and Tech. 6(5): May 2013; Page 459-464
42.    Kollu NV. Lajeunesse DR. Cell Rupture and Morphogenesis Control of the Dimorphic Yeast Candida albicans by Nanostructured Surfaces. ACS Omega 2021; 4;6(2):1361-1369.
43.    Sundaram M. Navaneethakrishnan RM. Evaluation of Vitek 2 system for clinical identification of Candida species and their antifungal susceptibility test. J Evolution Med Dent Sci 2016; 5(47):2948-2951.
44.    Cooke VM. Miles RJ. Price RG. Midgley G. Khamri W. Richardson AC. New Chromogenic Agar Medium for the Identification of Candida spp. App Environ Microbiol 2002; 3622-3627.
45.    Neppelenbroek KH. Seó RS. Urban VM. Silva S. Dovigo LN. Jorge JH. Campanha NH. Identification of Candida species in the clinical laboratory: a review of conventional, commercial, and molecular techniques. Oral Dis 2014; 20(4):329-44
46.    Dey A. Ragavan ML. Mandal SK. Das N . Isolation, Identification and In vitro Characterisation of Probiotic Yeast Strains. Research J. Pharm. and Tech. 2017; 10(3): 726-732.
47.    Gharanfoli A. Mahmoudi E. Torabizadeh R. Katiraee F. Faraji S. Isolation, characterization, and molecular identification of Candida species from urinary tract infections. Curr Med Mycol 2019; 5(2):33-36.
48.    Ali HH.  Al-Obaidi RM. Fattah CH. Molecular identification of Candida species isolated from ears of dogs infected with Otitis externa by detecting internal transcript spacer (ITS1 and ITS4) in Sulaimania. Iraq Adv Anim Vet Sci 2015; 3(9):491-499.
49.    Berger BJ. Knodel MH. Characterization of methionine adenosyltransferase from Mycobacterium smegmatis and M. tuberclosis, BMC Microbiol 2003; 3:12.
50.    Rato C. Amirova SR.  Bates DG.  Stansfield I.  Wallace HM. Translational recoding as a feedback controller: systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift. Nucleic Acids Res 2011; 39(11):4587-4597.
51.    Tamizh Paavai Tha. Gopinath P. Differentiation of Candida dubliniensis on CHROM agar and Pal’s agar. Research J. Pharm. and Tech 2016; 9(12):2150-2154.
52.    Zagazig Egypt. Comparison of methods used in identification of Candida albicans. Research J. Pharm. and Tech. 2018; 11(3): 1164-1168.
53.    Rybalkin M. Diadiun T. Khokhlenkova N. Azarenko Y. Stepanenko S. Determination of Candida albicans fungus proteins concentration by Elisa method at Intramuscular Introduction in Candidiasis Therapy. Research Journal of Pharmacy and Technology. 2021; 14(6):3249-2
 

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available