Author(s):
Dhanashree P. Sanap, Nidhi P. Sapkal, Anwar S. Daud
Email(s):
dmundhey1990@gmail.com
DOI:
10.52711/0974-360X.2023.00217
Address:
Dhanashree P. Sanap1,3*, Nidhi P. Sapkal2, Anwar S. Daud1
1Worked carried at Centre for Advanced Research and Innovation (CARIn), Zim Laboratories Ltd. B-21/22, MIDC Area, Kalmeshwar 441501 Dist. Nagpur (M.S.), India.
2Department of Pharmaceutical Chemistry, Gurunanak College of Pharmacy, Nari, Kamgarnagar, Nagpur (M.S.), India.
3Department of Pharmaceutics, Bharati Vidyapeeth’s College of Pharmacy, CBD Belapur, Navi Mumbai, (M.S.), India.
*Corresponding Author
Published In:
Volume - 16,
Issue - 3,
Year - 2023
ABSTRACT:
This research was aimed to formulate and characterize micro-emulsion systems as a sublingual delivery system of fentanyl citrate an opioid pain medicine used for treatment of breakthrough cancer pain that is not controlled by other medicines. The three phases i.e. oil, surfactant and co-surfactant were selected on the basis of their drug solubility and their efficiency to form ME. Pseudo-ternary phase diagrams were constructed and on the basis of ME existence ranges various formulations of FC were developed. The influence of Smix ratio on the ME formation and in vitro permeation of ME through cellophane membrane was studied respectively. The optimized ME formulation C2 consists of a globule size of 96.9 nm, polydispersity index of 0.263, pH 4.18, viscosity 20.4 cps, a zeta potential of -8.5and conductance of 131.7±0.42µS. The optimized ME formulation C2 exhibited a steady state flux of about 361.92±0.57 and thus exhibiting higher drug permeation through ME for mulations. Apart from this, the formulation was also evaluated for drug content, centrifugation and stability study. The results indicate that, the investigated MEmay be used as a promising alternative for FC therapy for breakthrough pain management.
Cite this article:
Dhanashree P. Sanap, Nidhi P. Sapkal, Anwar S. Daud. Design and Characterization of Microemulsion System for Fentanyl citrate. Research Journal of Pharmacy and Technology 2023; 16(3):1319-6. doi: 10.52711/0974-360X.2023.00217
Cite(Electronic):
Dhanashree P. Sanap, Nidhi P. Sapkal, Anwar S. Daud. Design and Characterization of Microemulsion System for Fentanyl citrate. Research Journal of Pharmacy and Technology 2023; 16(3):1319-6. doi: 10.52711/0974-360X.2023.00217 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-3-53
REFERENCES:
1. Modesti C. Sacco T. Morelli G. Bocci MG. Ciocchetti P. Vitale F. Perilli V. Sollazzi L et al. Balanced anestesia versus total intravenous anestesia for kidney transplantation. Minerva Anestesiologica. 2006; 72(7-8): 627–35.PMID: 16865081
2. Peng PW. Sandler AN. A review of the use of fentanyl analgesia in the management of acute pain in adults. Anesthesiology. 1999; 90: 576–99.https://doi.org/10.1097/00000542-199902000-00034
3. Scott JC. Cooke JE. Stanski DR. Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology. 1991; 74: 34–42.https://doi.org/10.1097/00000542-199101000-00007
4. Waara-Wolleat KL. Hildebrand KR. Stewart GR. A review of intrathecal fentanyl and sufentanil for the treatment of chronic pain. Pain Medicine. 2006; 7(3): 251–9.https://doi.org/10.1111/j.1526-4637.2006.00155.x
5. Hall GM. Fentanyl and the metabolic response to surgery. British Journal of Anaesthesia. 1980; 52(6): 561–2.https://doi.org/10.1093/bja/52.6.561
6. Labroo RB. Paine MF. Thummel KE. Kharasch ED. Fentanyl metabolism by human hepatic and intestinal cytrochrome P450 3A4: implication for interindividual variabiliry in disposition efficacy and drug interactions. Drug Metabolism and Disposition. 1997; 25(9): 1072–80.PMID: 9311623
7. Roy SD. Flynn GL. Solubility and related physicochemical properties of narcotic analgesics. Pharmaceutical Research. 1988; 5(9): 580-6.https://doi.org/10.1023/a:1015994030251
8. Gardner-Nix J. Oral transmucosal fentanyl and sufentanil for incident pain. Journal of Pain and Symptom Management. 2001; 22(2): 627–30.https://doi.org/10.1016/S0885-3924(01)00321-9
9. Lichtor JL. Sevarino FB. Joshi GP. Busch MA. Nordbrock E. Ginsberg B. The relative potency of oral transmucosal fentanyl citrate compared with intravenous morphine in the treatment of moderate to severe postopera¬tive pain. Anesthesia and Analgesia. 1999; 89(3): 732–8.doi: 10.1213/00000539-199909000-00038
10. Mock DL. Streisand JB. Hague B et al. Transmucosal narcotic delivery: an evaluation of fentanyl (lollipop) premedication in man. Anesthesia and Analgesia. 1986; 65: S102.
11. Lee M. Kern SE. Kisicki JC. Egan D. A pharmacokinetic study to compare two simultaneous 400 μg doses with a single 800 μg dose of oral trans¬mucosal fentanyl citrate. Journal of Pain and Symptom Management. 2003; 26(2): 743-7.https://doi.org/10.1016/s0885-3924(03)00241-0
12. Novotna S. Valentova K. Fricova J. Richterova E. Harabisova S. Bullier F. Trinquet F. A randomized, placebo-controlled study of a new sublingual formulation of fentanyl citrate (Fentanyl Ethypharm) for breakthrough pain in opioid-treated patients with cancer. Clinical Therapeutics. 2014; 36(3): 357-67.https://doi.org/10.1016/j.clinthera.2014.01.006
13. Vasisht N. Gever LN. Tagarro I. Finn AL. Single-dose pharmacokinetics of fentanyl buccal soluble film. Pain Medicine. 2010; 11(7): 1017-23.https://doi.org/10.1111%2Fj.1526-4637.2010.00875.x
14. Davies AN. Dickman A. Reid C. Stevens AM. Zeppetella G. The management of cancer-related breakthrough pain: Recommendations of a task group of the Science Committee of the Association for Palliative Medicine of Great Britain and Ireland. European Journal of Pain. 2009; 13(4): 331–8.doi: 10.1016/j.ejpain.2008.06.014.
15. Streisand JB. Varvel JR. Stanski DR. Le Maire L. Ashburn MA. Hague BI et al. Absorption and bioavailability of oral transmucosal fentanyl citrate. Anesthesiology. 1991; 75(2): 223–29.https://doi.org/10.1097/00000542-199108000-00009
16. Stanley TH. The fentanyl story. The Journal of Pain. 2014; 15(12): 1215-26.https://doi.org/10.1016/j.jpain.2014.08.010
17. Rxlist [online]. http://www.rxlist.com/script/main/srchcont_rxlist.asp?src=bu prenorphine and x=0 and y=0 (accessed on 02.04.2016)
18. US-FDA Orange Book: Approved Drug Products with Therapeutic Equivalence Evaluations. http://www.accessdata.fda.gov/scripts/cder/ob/docs/tempai.cfm (accessed on 02.04.2021)
19. Mundhey D. Sapkal N. Daud A. Advances in noninvasive drug delivery systems of opioids: formulation and clinical prospective.Asian Journal of Pharmaceutical and clinical research. 2016; 9(4): 1-7.
20. Gupta A. Mishra AK. Gupta V. Bansal P. Singh R. Singh AK. Recent Trends of Fast Dissolving Tablet - An Overview of Formulation Technology. International Journal of Pharmaceutical and Biological Archives. 2010; 1(10): 1-10.
21. Bayrak Z. Tas C. Tasdemir U. Erol H. Orkan CK. Savaser A. Ozkan Y. Formulation of zolmitriptan sublingual tablets prepared by direct compression with different polymer: In vitro and in vivo evaluation. European journal ofPharmaceutics and Biopharmaceutics. 2011; 78(3): 499-505.https://doi.org/10.1016/j.ejpb.2011.02.014
22. Elsheikh MA. Elnaggar YS. Gohar EY. Abdallah OY. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal. International Journal of Nanomedicine. 2012; 7: 3787-802.https://doi.org/10.2147/ijn.s33186
23. Lokhande SS. Microemulsion as promising delivery systems: a review. Asian Journal of Pharmaceutical Research. 2019; 9(2): 90-6. doi: 10.5958/2231-5691.2019.00015.7.
24. Jagtap SR. Phadtare DG. Saudagar RB. Microemulsion: A current review. Research Journal of Pharmaceutical Dosage Forms and Technology. 2016; 8(2):161-70. doi: 10.5958/0975-4377.2016.00021.5
25. Microemulsion. Wikipedia: The Free Encyclopedia. https://en.wikipedia.org/wiki/Microemulsion (accessed on 05.04.2021)
26. Mandavi N. Ansari N. Bharti R. Kader NS A. Sahu GK. Sharma H. Microemulsion: A potential novel drug delivery system. Research Journal of Pharmaceutical Dosage Forms and Technology. 2018; 10(4): 266-71. doi: 10.5958/0975-4377.2018.00039.3
27. Ashok P. Meyyanathan SN. Jawahar N. Vadivelan R. Irbesartan formulation and evaluation of loaded solid lipid nanoparticles by microemulsion techinque. Asian Journal of Pharmacy and Technology. 2020; 10(4): 228-30. doi: 10.5958/2231-5713.2020.00038.0.
28. Mundhey DA. Sapkal NP. Daud AS. Optimization, characterization and in vitro evaluation of Buprenorphine microemulsion. International Journal of Pharmaceutical Sciences Review and Research. 2020; 60(2): 67-75.
29. Derle DV. Sagar BSH. Yeole DR. Development and evaluation of topical microemulsion gels for protein and peptide drug Bacitracin Zinc. Research Journal of Pharmaceutical Dosage Forms and Technology. 2009; 1(3):217-21.doi: 10.5958/0975-4377
30. Chandrakar S. Roy A. Choudhury A. Saha S. Bahadur S, Prasad P. Microemulsion: A Versatile Tool for Ocular Drug Delivery. Asian Journal of Pharmacy and Technology. 2014; 4(3): 147-50.
31. Mackay RA. Dixit NS. Hermansky C. Kertes AS. Conductivity and diffusion measurements in micellar and o/w microemulsion system - a comparative study. Colloids and Surfaces. 1986; 21: 27-39.https://doi.org/10.1016/0166-6622(86)80080-4
32. Nazar MF. Khan AM. Shah SS. Microemulsion system with improved loading of piroxicam: a study of microstructure. AAPS PharmSciTech. 2009; 10(4): 1286-94.https://doi.org/10.1208/s12249-009-9328-9
33. Mundhey D. Sapkal N. Daud A. Development and validation of a simple UV spectrophotometric method for the determination of Fentanyl citrate in bulk and microemulsion formulation. International Journal of Pharmaceutical Sciences and Research. 2021; 12(1): 1582-87. doi: 10.13040/IJPSR.0975-8232.
34. Fentanyl citrate Injection. United States Pharmacopoeia 30 National Formulary 25 (USP-NF) The Official Compendia of Standards United States Pharmacopeial Convention; 2014.
35. Abitec an ABF Ingredients Company. CAPMUL® MCM C8. Technical Data Sheets. http://www.abiteccorp.com/product-lines/capmul.
36. Inugala S. Eedara BB. Sunkavalli SS. Dhurke R. Kandadi P. Jukanti R. Bandari S. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: in vitro and in vivo evaluation. European Journal of Pharmaceutical Sciences. 2015; 74: 1-10. doi: http:// dx.doi.org/10.1016/j.ejps.2015.03.024.
37. Bega S. Jenaa SS. Patra NC. Rizwan M. Swain S. Sruti J et al. Development of solid self-nanoemulsifying granules (SSNEGs) of ondansetron hydrochloride with enhanced bioavailability potential. Colloids and Surfaces B: Biointerfaces. 2013; 101: 414–23. doi: 10.1016/j.colsurfb.2012.06.031.
38. Bali V. Ali M. Ali J. Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Colloids Surfaces B: Biointerfaces. 2010; 76(2): 410–20. doi: 10.1016/j.colsurfb.2009.11.021.
39. Warisnoicharoen W. Lansley AB. Lawrence MJ. Light scattering investigations on dilute nonionic oil-in-water microemulsions. AAPS PharmSci. 2000; 2920: E12.https://doi.org/10.1208/ps020212
40. Mandawgade SD. Sharma S. Pathak S. Patravale VB. Development of SMEDDS using natural lipophile: application to ß artemether delivery. International Journal of Pharmaceutics. 2008; 362(1-2): 179-83. https://doi.org/10.1016/j.ijpharm.2008.06.021
41. El-Laithy HM. Self-nanoemulsifying drug delivery system for enhanced bioavailability and improved hepatoprotective activity of biphenyl dimethyl dicarboxylate. Current Drug Delivery. 2008; 5(3): 170-6.doi: 10.2174/156720108784911695.
42. Nidhin M. Indumathy R. Sreeram KJ et al. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of material Sciences. 2008; 31: 93–6. https://doi.org/10.1007/s12034-008-0016-2
43. Kumar R. Sinha VR. Preparation and optimization of vornicazole microemulsion for ocular delivery. Colloids Surfaces B: Biointerfaces. 2014; 117: 82–8. https://doi.org/10.1016/j.colsurfb.2014.02.007
44. Honary S. Zahir F. Effect of zeta potential on the properties of nano-drug delivery syatems – A review (Part 2). Tropical Journal of Pharmaceutical Research. 2013; 12(2): 265-73.https://doi.org/10.4314/tjpr.v12i2.19
45. Quaglia F. Ostacolo L. Mazzaglia A. Villari V. Zaccaria D. Sciortino MT. The intracellular effect of non-ionic amphiphilic cyclodextrin nanoparticles in the delivery of anticancer drugs. Biomaterials. 2009; 30(3): 374-82. doi: 10.1016/j.biomaterials.2008.09.035.