Author(s): Sanjit Boora, Anish Khan, Kumari Soniya, Suman Yadav, Sulochana Kaushik, Ramesh Kumar, Sunil Chhikara, Samander Kaushik

Email(s): samanderkaushik@gmail.com

DOI: 10.52711/0974-360X.2023.00247   

Address: Sanjit Boora1, Anish Khan1, Kumari Soniya1, Suman Yadav1, Sulochana Kaushik2, Ramesh Kumar3, Sunil Chhikara4, Samander Kaushik1*
1Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India.
2Department of Genetics, Maharshi Dayanand University, Rohtak, India.
3Department of Biotechnology, Indira Gandhi University - Meerpur, Rewari, India.
4University Institute of Engineering and Technology (UIET), MDU, Rohtak, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 3,     Year - 2023


ABSTRACT:
Influenza is a considerable public health hazard that affects people worldwide. Effective diagnosis and timely treatment are critical for the influenza virus. The current review primarily focuses on isolating a novel, cost-effective anti-influenza viral. Several natural bioactive compounds have precious therapeutic potential. We have shortlisted twenty-one medicinal plants with potent antiviral properties effective at different stages of replication of the influenza virus. Certain extracts of these medicinal plants are gaining popularity compared to synthetic drugs due to their safety and broad-spectrum action. Our meta-analysis focuses on various characteristics of the medicinal plant extracts that help prevent and spread the influenza virus in the early stages. Oseltamivir, zanamivir, amantadine, and rimantadine are used to inhibit the activity of neuraminidase and matrix-2 proteins. However, they have side effects. Their inappropriate doses may cause mutation and confer resistance to the antivirals. According to the circulating strain, the influenza vaccine needs to be updated every year. As a result, chemically synthetic drugs and the current vaccination are not long-term solutions. Thus, we focus on plant metabolites, which are less harmful, permanent cures, and cost-effective than synthetic drugs.


Cite this article:
Sanjit Boora, Anish Khan, Kumari Soniya, Suman Yadav, Sulochana Kaushik, Ramesh Kumar, Sunil Chhikara, Samander Kaushik. Antiviral potential of Medicinal plants against Influenza Viruses: A Systematic Review. Research Journal of Pharmacy and Technology 2023; 16(3):1503-3. doi: 10.52711/0974-360X.2023.00247

Cite(Electronic):
Sanjit Boora, Anish Khan, Kumari Soniya, Suman Yadav, Sulochana Kaushik, Ramesh Kumar, Sunil Chhikara, Samander Kaushik. Antiviral potential of Medicinal plants against Influenza Viruses: A Systematic Review. Research Journal of Pharmacy and Technology 2023; 16(3):1503-3. doi: 10.52711/0974-360X.2023.00247   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-3-83


REFERENCES:
1.    WHO: Influenza (Seasonal) [Internet]. Who.int; 2021. Available on: https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal)
2.    Iuliano AD. Roguski KM. Chang HH. Muscatello DJ. Palekar R. Tempia S et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. The Lancet. 2018; 391(10127):1285-1300. https://doi.org/10.1016/S0140-6736(17)33293-2
3.    CDC: 2020-2021 Flu Season Summaries [Internet]. Centers for Disease Control and Prevention. 2021a; [cited 16 Sept 2021]. Available on: https://www.cdc.gov/flu/season/faq-flu-season-2020-2021.htm
4.    ICTV: Orthomyxoviridae - Negative Sense RNA Viruses - Negative Sense RNA Viruses (2011) - ICTV. Talk.ictvonline.org. 2011 [cited 16 Sept 2021]. Available on: https://talk.ictvonline.org/ictv-reports/ictv_9th_report/negative-sense-rna-viruses-2011/w/negrna_viruses/209/orthomyxoviridae
5.    Eisfeld AJ. Neumann G. Kawaoka Y. At the centre: influenza A virus ribonucleoproteins. Nature Reviews Microbiology. 2015; 13(1):28-41. 10.1038/nrmicro3367
6.    Gubareva LV. Kaiser L. Hayden FG. Influenza virus neuraminidase inhibitors. The Lancet. 2000; 355(9206):827-835. https://doi.org/10.1016/S0140-6736(99)11433-8
7.    Hu Y. Lu S. Song Z. Wang W. Hao P. Li J. et al. Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance. The Lancet. 2013; 381(9885):2273-2279. https://doi.org/10.1016/S0140-6736(13)61125-3
8.    Chung TH. Kim JC. Kim MK. Choi SC. Kim SL. Chung JM et al. Investigation of Korean plant extracts for potential phytotherapeutic agents against B‐virus hepatitis. Phytotherapy research. 1995; 9(6):429-434. https://doi.org/10.1002/ptr.2650090609
9.    Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era?. Archives of medical research. 2005; 36(6):697-705.. https://doi.org/10.1016/j.arcmed.2005.06.009
10.    Kaushik S. Dar L. Kaushik S. Yadav JP. Anti-dengue activity of super critical extract and isolated oleanolic acid of Leucas cephalotes using in vitro and in silico approach. BMC Complementary Medicine and Therapies. 2021; 21(1):1-5. 10.1186/s12906-021-03402-2
11.    Kaushik S. Dar L. Kaushik S. Yadav JP. Identification and characterization of new potent inhibitors of dengue virus NS5 proteinase from Andrographis paniculata supercritical extracts on in animal cell culture and in silico approaches. Journal of Ethnopharmacology. 2021; 267:113541 10.1016/j.jep.2020.113541
12.    Sharma Y. Kawatra A. Sharma V. Dhull D. Kaushik S. Yadav JP. Kaushik S. In-vitro and in-silico evaluation of the anti-chikungunya potential of Psidium guajava leaf extract and their synthesized silver nanoparticles. VirusDisease. 2021; 32(2):260-265. 10.1007/s13337-021-00685-4
13.    Kaushik S. Kaushik S. Kumar R. Dar L. Yadav JP. In-vitro and in silico activity of Cyamopsis tetragonoloba (Gaur) L. supercritical extract against the dengue-2 virus. VirusDisease. 2020; 31(4):470-478. 10.1007/s13337-020-00624-9
14.    Kaushik S. Kaushik S. Sharma V. Yadav J. Antiviral and therapeutic uses of medicinal plants and their derivatives against dengue viruses. Pharmacognosy Reviews. 2018; 12(24). 10.4103/phrev.phrev_2_18
15.    Sharma V. Kaushik S. Pandit P. Dhull D. Yadav JP. Kaushik S. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Applied microbiology and biotechnology. 2019 Jan;103(2):881-891. 10.1007/s00253-018-9488-1
16.    Kaushik S. Jangra G. Kundu V. Yadav JP. Kaushik S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. Virusdisease. 2020; 31(3):270-276. 10.1007/s13337-020-00584-0
17.    Kaushik S. Sharma V. Chhikara S. Yadav JP. Kaushik S. Anti-chikungunya activity of green synthesized silver nanoparticles using Carica papaya leaves in animal cell culture model. Asian Journal of Pharmaceutical and Clinical Research. 2019; 12(6):170-174. https://doi.org/10.22159/ajpcr.2019.v12i6.32179
18.    Cox NJ. Subbarao K. Influenza. Lancet. 1999; 354(9186): 1277-1282. 10.1016/S0140-6736(99)01241-6.
19.    CDC: Flu Symptoms & Complications [Internet]. Centers for Disease Control and Prevention. 2021b. Available from: https://www.cdc.gov/flu/symptoms/symptoms.htm
20.    CDC: How Flu Spreads [Internet]. Centers for Disease Control and Prevention. 2021c; Sept 2021. Available from: https://www.cdc.gov/flu/about/disease/spread.htm
21.    Motlhatlego KE. Mehrbod P. Fotouhi F. Abdalla MA. Eloff JN. McGaw LJ. Anti-influenza A virus activity of two Newtonia species and the isolated compound myricetin-3-o-rhamnoside. BMC complementary medicine and therapies. 2021; 21(1):1-8. https://doi.org/10.1186/s12906-021-03250-0
22.    NCDC: Seasonal Influenza H1N1. National Centre for Disease Control (NCDC) [Internet]. Ncdc.gov.in. 2021 [cited 16 Sept 2021]. Available on: https://ncdc.gov.in/index4.php?lang=1&level=0&linkid=119&lid=276
23.    Cox NJ. Subbarao K. Global epidemiology of influenza: past and present. Annual review of medicine. 2000; 51(1):407-421. 10.1146/annurev.med.51.1.407
24.    Broor S. Chahar HS. Kaushik S. Diagnosis of influenza viruses with special reference to novel H1N1 2009 influenza virus. Indian journal of microbiology. 2009; 49(4):301-307. 10.1007/s12088-009-0054-5
25.    Khan A. Kamra E. Singh R. Sharma V. Singh V et al. Diagnosis of osteoarticular tuberculosis: multi-targeted loop-mediated isothermal amplification assay versus multiplex PCR. Future microbiology. 2021; 16(13):935-948. https://doi.org/10.2217/fmb-2021-0030
26.    Khan A. Singh R. Sharma S. Singh V. Sheoran A. Soni A et al. Diagnosis of osteoarticular tuberculosis by immuno‐PCR assay based on mycobacterial antigen 85 complex detection. Letters in applied microbiology. 2022; 74(1):17-26. https://doi.org/10.1111/lam.13567
27.    CDC: Overview of Influenza Testing Methods | CDC [Internet]. Cdc.gov. 2021d [cited 16 Sept 2021]. Available on: https://www.cdc.gov/flu/professionals/diagnosis/overview-testing-methods.htm
28.    Mahony JB. Detection of respiratory viruses by molecular methods. Clinical microbiology reviews. 2008; 21(4):716-747.  https://doi.org/10.1128/CMR.00037-07
29.    Seo S. Lee J. Choi EJ. Kim EJ. Song JY. Kim J. Polydiacetylene Liposome Microarray Toward Influenza A Virus Detection: Effect of Target Size on Turn‐On Signaling. Macromolecular rapid communications. 2013; 34(9):743-748. https://doi.org/10.1002/marc.201200819
30.    Moore C. Hibbitts S. Owen N. Corden SA. Harrison G. Fox J. Gelder C. Westmoreland D. Development and evaluation of a real‐time nucleic acid sequence based amplification assay for rapid detection of influenza A. Journal of medical virology. 2004; 74(4):619-628. https://doi.org/10.1002/jmv.20221
31.    Sharma V. Kaushik S. Comparative analysis of molecular methods for detection of influenza viruses. Microbiology Research Journal International. 2016; 17:1-10. http://www.sciencedomain.org/review-history/16439
32.    Sharma V. Chaudhry D. Kaushik S. Evaluation of clinical applicability of reverse transcription-loop-mediated isothermal amplification assay for detection and subtyping of Influenza A viruses. Journal of virological methods. 2018; 253:18-25. https://doi.org/10.1016/j.jviromet.2017.12.005
33.    Uyeki TM. Oseltamivir treatment of influenza in children. Clinical Infectious Diseases. 2018; 66(10):1501-1503. https://doi.org/10.1093/cid/cix1150
34.    Devi BP. Manoharan K. Anti viral medicinal plants-an ethnobotanical approach. Journal of Phytology. 2009;1(6):417-421. https://www.cabdirect.org/cabdirect/abstract/20113109785
35.    CDC (2021E) Key Facts About Seasonal Flu Vaccine [Internet]. Centers for Disease Control and Prevention. 2021 [cited 15 Sept 2021]. Available on: https://www.cdc.gov/flu/prevent/keyfacts.htm  
36.    Wang Z. Fang J. Luo J. Hou D. Tan Y. Gu Z. Ge Y, et al. Antiviral Activity of 3D, a Butene Lactone Derivative Against Influenza A Virus In Vitro and In Vivo. Viruses. 2021; 13(2):278. https://doi.org/10.3390/v13020278
37.    Sarker SD. Nahar L. Natural medicine: the genus Angelica. Current medicinal chemistry. 2004; 11(11):1479-1500. https://doi.org/10.2174/0929867043365189
38.    Lee BW. Ha TK. Cho HM. An JP. Kim SK. et al. Antiviral activity of furanocoumarins isolated from Angelica dahurica against influenza a viruses H1N1 and H9N2. Journal of Ethnopharmacology. 2020; 259:112945. https://doi.org/10.1016/j.jep.2020.112945
39.    Divya BJ. Suman B. Venkataswamy M. Thyagaraju K. A study on phytochemicals, functional groups and mineral composition of Allium sativum (garlic) cloves. Int J Curr Pharm Res. 2017; 9(3):42-45. http://dx.doi.org/10.22159/ijcpr.2017v9i3.18888
40.    Ming L, Li Z, Li X, Tang L, He G. Antiviral activity of diallyl trisulfide against H9N2 avian influenza virus infection in vitro and in vivo. Virology Journal. 2021; 18(1):1-11. https://link.springer.com/article/10.1186/s12985-021-01641-w
41.    Foster M. Hunter D. Samman S. Evaluation of the nutritional and metabolic effects of Aloe vera. Herbal Medicine: Biomolecular and Clinical Aspects.2011; 2nd edition.
42.    Surjushe A. Vasani R. Saple DG. Aloe vera: a short review. Indian journal of dermatology. 2008; 53(4):163. 10.4103/0019-5154.44785
43.    Huang CT. Hung CY. Hseih YC. Chang CS. Velu AB. He YC. et al. Effect of aloin on viral neuraminidase and hemagglutinin-specific T cell immunity in acute influenza. Phytomedicine. 2019; 64:152904. https://doi.org/10.1016/j.phymed.2019.152904
44.    She GM. Zhang YJ. Yang CR. A new phenolic constituent and a cyanogenic glycoside from Balanophora involucrata (Balanophoraceae). Chemistry & Biodiversity. 2013; 10(6):1081-1087. https://doi.org/10.1002/cbdv.201200103
45.    Wei J. Huo X. Yu Z. Tian X. Deng S. Sun C. et al. Phenolic acids from Balanophora involucrata and their bioactivities. Fitoterapia. 2017; 121:129-135. https://doi.org/10.1016/j.fitote.2017.07.003
46.    Sun X. Zhang L. Cao Y. Li J. Atanasov AG. Huang L. Anti‐neuraminidase activity of chemical constituents of Balanophora involucrata. Biomedical Chromatography. 2020; 34(12):e4949. https://doi.org/10.1002/bmc.4949
47.    Zhang L. Chen J. Ke C. Zhang H. Zhang S. Tang W. et al. Ethanol Extract of Caesalpinia decapetala Inhibits Influenza Virus Infection In Vitro and In Vivo. Viruses. 2020; 12(5):557. https://doi.org/10.3390/v12050557
48.    State Pharmacopoeia Committee. Chinese pharmacopoeia (Part I) [M]. Medical Science Press, Beijing, 2015; pp. 197.
49.    Yang LP. Gu XL. Chen JX. Yang J. Tan SY. Duan WJ. Chemical constituents from Canarium album Raeusch and their anti-influenza A virus activities. Journal of natural medicines. 2018; 72(3):808-815. https://doi.org/10.1007/s11418-018-1208-8
50.    Chen F. Yang L. Huang Y. Chen Y. Sang H. Duan W. Yang J. Isocorilagin, isolated from Canarium album (Lour.) Raeusch, as a potent neuraminidase inhibitor against influenza A virus. Biochemical and Biophysical Research Communications. 2020; 523(1):183-189. https://doi.org/10.1016/j.bbrc.2019.12.043
51.    Choudhary BR. Haldhar SM. Maheshwari SK. Bhargava R. Sharma SK. Phytochemicals and antioxidants in watermelon (Citrullus lanatus) genotypes under hot arid region. 2015; 85(3): 414–417. http://krishi.icar.gov.in/jspui/handle/123456789/2257
52.    Morimoto R. Yoshioka K. Nakayama M. Nagai E. Okuno Y. Nakashima A. et al. Juice of Citrullus lanatus var. citroides (wild watermelon) inhibits the entry and propagation of influenza viruses in vitro and in vivo. Food Science & Nutrition. 2021; 9(1):544-552. https://doi.org/10.1002/fsn3.2023
53.    George W. Yang SZ. Convolvulaceae. In Flora of Taiwan, 2nd ed.; Editorial Committee of the Flora of Taiwan, Ed.; Department of Botany, National Taiwan University: Taipei, Taiwan, 1998; 2nd ed: pp. 344–347.
54.    Cheng JC. Liaw CC. Lin MK. Chen CJ. Chao CL. Chao CH. et al. Anti-Influenza Virus Activity and Chemical Components from the Parasitic Plant Cuscuta japonica Choisy on Dimocarpus longans Lour. Molecules. 2020 Jan;25(19):4427. https://doi.org/10.3390/molecules25194427
55.    Nile SH. Su J. Wu D. Wang L. Hu J. Sieniawska E. Kai G. Fritillaria thunbergii Miq.(Zhe Beimu): A review on its traditional uses, phytochemical profile and pharmacological properties. Food and Chemical Toxicology. 2021;153:112289. https://doi.org/10.1016/j.fct.2021.112289
56.    Kim M. Nguyen DV. Heo Y. Park KH. Paik HD. Kim YB. Antiviral activity of fritillaria thunbergii extract against human influenza virus H1N1 (PR8) in vitro, in ovo and in vivo. Journal of Microbiology and Biotechnology. 2020; 30(2): 172-177. https://doi.org/10.4014/jmb.1908.08001
57.    Da-Costa-Rocha I. Bonnlaender B. Sievers H. Pischel I. Heinrich M. Hibiscus sabdariffa L.–A phytochemical and pharmacological review. Food chemistry. 2014; 165:424-443. https://doi.org/10.1016/j.foodchem.2014.05.002
58.    Takeda Y. Okuyama Y. Nakano H. Yaoita Y. Machida K. Ogawa H. Imai K. Antiviral activities of Hibiscus sabdariffa L. tea extract against human influenza A virus rely largely on acidic pH but partially on a low-pH-independent mechanism. Food and environmental virology. 2020; 12(1):9-19. https://doi.org/10.1007/s12560-019-09408-x
59.    Shingnaisui K. Dey T. Manna P. Kalita J. Therapeutic potentials of Houttuynia cordata Thunb. against inflammation and oxidative stress: A review. Journal of ethnopharmacology. 2018; 220:35-43. https://doi.org/10.1016/j.jep.2018.03.038
60.    Ling LJ. Lu Y. Zhang YY. Zhu HY. Tu P. Li H. Chen DF. Flavonoids from Houttuynia cordata attenuate H1N1-induced acute lung injury in mice via inhibition of influenza virus and Toll-like receptor signalling. Phytomedicine. 2020; 67:153150. https://doi.org/10.1016/j.phymed.2019.153150
61.    Nguyen NH. Ha TK. Choi S. Eum S. Lee CH. Bach TT. Chinh VT. Oh WK. Chemical constituents from Melicope pteleifolia leaves. Phytochemistry. 2016; 130:291-300. https://doi.org/10.1016/j.phytochem.2016.06.011
62.    Lee BW. Quy Ha TK. Park EJ. Cho HM. Ryu B. Doan TP. Lee HJ. Oh WK. Melicopteline A–E, Unusual Cyclopeptide Alkaloids with Antiviral Activity against Influenza A Virus from Melicope pteleifolia. The Journal of Organic Chemistry. 2020; 86(2):1437-1447. https://doi.org/10.1021/acs.joc.0c02137
63.    Chan EW, Phui-Yan LY, Siu-Kuin WO. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chinese journal of natural medicines. 2016; 14(1):17-30. https://doi.org/10.3724/SP.J.1009.2016.00017
64.    Hong EH. Song JH. Kim SR. Cho J. Jeong B. Yang H. Jeong JH. et al. Morin Hydrate Inhibits Influenza Virus entry into Host Cells and Has Anti-inflammatory Effect in Influenza-infected Mice. Immune Network. 2020; 20(4):  e32. 10.4110/in.2020.20.e32
65.    Motlhatlego KE. McGaw LJ. Newtonia buchananii. InUnderexplored Medicinal Plants from Sub-Saharan Africa. Academic Press. 2020; pp.199-204.
66.    Kwon EB. Yang HJ. Choi JG. Li W. Protective Effect of Flavonoids from Ohwia caudata against Influenza a Virus Infection. Molecules. 2020; 25(19):4387. https://doi.org/10.3390/molecules25194387
67.    Li W. Sun YN. Yan XT. Yang SY. Kim S. Chae D et al. Anti-inflammatory and antioxidant activities of phenolic compounds from Desmodium caudatum leaves and stems. Archives of pharmacal research. 2014; 37(6):721-727. https://doi.org/10.1007/s12272-013-0241-0
68.    Kumaravel S. Muthukumaran P. Thomas N. Phytochemical, GC-MS and FT-IR analysis of Papver somniferum. L. Journal of Pharmaceutical and Biological Sciences. 2019; 7(1):1-8.
69.    Triner L. Vulliemoz Y. Schwartz I. Nahas GG. Cyclic phosphodiesterase activity and the action of papaverine. Biochemical and biophysical research communications. 1970; 40(1):64-69. https://doi.org/10.1016/0006-291X(70)91046-6
70.    Aggarwal M. Leser GP. Lamb RA. Repurposing papaverine as an antiviral agent against influenza viruses and paramyxoviruses. Journal of virology. 2020; 94(6):e01888-19. https://doi.org/10.1128/JVI.01888-19
71.    Savin S. Toma A. Craciunescu O. Oancea A. Manoiu S. Sesan TE. Sarbu A. et al. Phytochemical investigations, structural and ultrastructural aspects of the Passiflora caerulea L. plants cultivated in Romania. Analele Stiintifice ale Universitatii" Al. I. Cuza" din Iasi. 2016; 62(1):138.
72.    Kim SR. Jeong MS. Mun SH. Cho J. Seo MD. Kim H. Lee J. et al. Antiviral activity of chrysin against influenza virus replication via inhibition of autophagy. Viruses. 2021 Jul;13(7):1350. https://doi.org/10.3390/v13071350
73.    Kwak CS. Moon SC. Lee MS. Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora). Nutrition and cancer. 2006; 56(2):162-171. https://doi.org/10.1207/s15327914nc5602_7
74.    Ha TK. Lee BW. Nguyen NH. Cho HM. Venkatesan T. et al. Antiviral activities of compounds isolated from Pinus densiflora (pine tree) against the influenza A virus. Biomolecules. 2020; 10(5):711. https://doi.org/10.3390/biom10050711
75.    Stevovic S. Mikovilovic VS. Dragosavac DC. Environmental adaptibility of tansy (Tanacetum vulgare L.). African Journal of Biotechnology. 2009;8(22). 10.5897/AJB09.1267
76.    Vilhelmova N. Simeonova L. Nikolova N. Pavlova E. Gospodinova Z. et al. Antiviral, cytotoxic and antioxidant effects of Tanacetum vulgare L. crude extract in vitro. Folia Medica. 2020; 62(1):172-179. 10.3897/folmed.62.e49370
77.    Després L. Gielly L. Redoutet B. Taberlet P. Using AFLP to resolve phylogenetic relationships in a morphologically diversified plant species complex when nuclear and chloroplast sequences fail to reveal variability. Molecular Phylogenetics and Evolution. 2003;27(2):185-196. https://doi.org/10.1016/S1055-7903(02)00445-1
78.    Liu L. Guo L. Zhao C. Wu X. Wang R. Liu C. Characterization of the intestinal absorption of seven flavonoids from the flowers of Trollius chinensis using the Caco-2 cell monolayer model. PLoS One. 2015; 10(3):e0119263. https://doi.org/10.1371/journal.pone.0119263
79.    Song Z. Hashi Y. Sun H. Liang Y. Lan Y. Wang H. Chen S. Simultaneous determination of 19 flavonoids in commercial trollflowers by using high-performance liquid chromatography and classification of samples by hierarchical clustering analysis. Fitoterapia. 2013; 91:272-279. https://doi.org/10.1016/j.fitote.2013.09.006
80.    Shi D. Chen M. Liu L. Wang Q. Liu S. Wang L. Wang R. Anti-influenza A virus mechanism of three representative compounds from Flos Trollii via TLRs signaling pathways. Journal of Ethnopharmacology. 2020; 253:112634. https://doi.org/10.1016/j.jep.2020.112634
81.    Ganesan K. Xu B. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Science and Human Wellness. 2018; 7(1):11-33. https://doi.org/10.1016/j.fshw.2017.11.002
82.    Killedar SG. More HN. Screening of antimicrobial potential and phytoconsituents for different extracts of Memecylon umbellatum Burm inflorescences. Asian Journal of Pharmaceutical Research. 2011;1(4):114-118.
83.    Maneesh K. Vijayabhaskar K. Firdouse H. Rao PS. Prajwitha M. Swetha S. Evaluation of Antimicrobial of P. vesicularis, Streptococcus faecalis, Aeromonas hydrophilia, Salmonela typhae, Stphylococcus cohni, Serratia ficaria and E. coli. of crude and n-butanol fraction fruit latex of Carica papaya L.(Caricaceae). Asian Journal of Pharmaceutical Research. 2021; 11(2):92-94. 10.52711/2231-5691.2021.00017
84.    Shrivastava K. Sahu S. Mishra SK. De K. In vitro antimicrobial activity and phytochemical screening of Syzygium aromaticum. Asian Journal of Research in Pharmaceutical Science. 2014;4(1):12-15.
85.    Tiwari P. Antimicrobial Activity of Ashwagandharishta Prepared by Traditional and Modern Methods. Asian Journal of Research in Pharmaceutical Science. 2014;4(3):115-117.
86.    Mohite S. Shah R. Patel N. Antimicrobial activity of leaves extracts of Passiflora foetida. Asian Journal of Research in Pharmaceutical Sciences. 2018; 8(1):17-20. 10.5958/2231-5659.2018.00004.8
87.    Malathi R. Cholarajan A. Karpagam K. Jaya KR. Muthukumaran P. Antimicrobial studies on selected medicinal plants (Coleus amboinicus, Phyla nodiflora and Vitex negundo). Asian Journal of Pharmacy and Technology. 2011; 1(2):53-55.
88.    Ratnam DP. Studies on phytochemical, antimicrobial activity and micro propagation of medicinal plants from Eastern Ghats of Andhra Pradesh. Asian Journal of Pharmacy and Technology. 2021; 11(2):111-115. 10.52711/2231-5713.2021.00018
89.    Srivastava S. Dubey A. Upadhayay S. Preliminary Pharmacognostical Studies and Antimicrobial Activity of Ziziphus maurtiana Roots. Research Journal of Pharmaceutical Dosage Forms and Technology. 2014; 6(2):65.
90.    Mohite S. Shah R. Patel N. Antimicrobial Activity of Leaves extracts of Cassia tora. Research Journal of Pharmaceutical Dosage Forms and Technology. 2018; 10(1):10-12. 10.5958/0975-4377.2018.00002.2
91.    Aher AK. Pal S. Yadav S. Patil U. Bhattacharya S. Evaluation of Antimicrobial Activity of Casuarina equisetifolia Frost (Casuarinaceae). Research Journal of Pharmacognosy and Phytochemistry. 2009; 1(1): 64-68.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available