Author(s): Satbir Kaur, Arunachalam Muthuraman

Email(s): arunachalammu@gmail.com

DOI: 10.52711/0974-360X.2023.00425   

Address: Satbir Kaur1,2, Arunachalam Muthuraman2*
1Department of Pharmacology, Chaudhary Devi Lal College of Pharmacy, BD Sharma University of Health Science, Yamuna Nagar, Pin - 135003, Haryana, India.
2Department of Pharmacology and Toxicology, Akal College of Pharmacy and Technical Education, Research Scholar of IK Gujral Punjab Technical University (Kapurthala), Mastuana Sahib, Sangrur-147001, Punjab, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 6,     Year - 2023


ABSTRACT:
Gallic acid (GA) is one of the natural flavonoids and it is known to protect the neuronal system from various endogenous neurodegenerative processes. The present study is focused on evaluating the role of GA in chronic construction injury (CCI) of sciatic nerve-induced neuropathic pain. The test compound i.e., gallic acid (20 and 40mg/kg), and reference compound i.e., pregabalin (PrG: 5mg/kg) were administered intravenously for 10 consecutive days. The sciatic nerve injury-induced neuralgic sensations were assessed with multiple test methods like acetone drop, pinprick, plantar, tail-flick, and tail pinch tests at different time points i.e., 0, 4th, 8th, 12th, and 16th days. The biochemical level changes i.e., thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide anion, calcium, myeloperoxidase (MPO), and tumor necrosis factor–a (TNF-a) were estimated in sciatic nerve samples. The administration of GA and PreG was shown a significant ameliorative effect against the CCI-induced pain response in a dose-dependent manner. Moreover, it also attenuated the tissue biochemical changes. The observed effects of GA were similar to reference drug PreG treated groups. Hence, GA has neuroprotective and pain relief effects against the CCI-induced neuralgia. It may be due to its natural free radical scavenging; regulation of inflammatory proteins; expression of antioxidant proteins, reduction of intracellular free calcium, and prevention of neuroinflammatory actions.


Cite this article:
Satbir Kaur, Arunachalam Muthuraman. Gallic acid attenuates the Chronic construction injury of sciatic nerve induced neuropathic pain in mice. Research Journal of Pharmacy and Technology 2023; 16(6):2591-0. doi: 10.52711/0974-360X.2023.00425

Cite(Electronic):
Satbir Kaur, Arunachalam Muthuraman. Gallic acid attenuates the Chronic construction injury of sciatic nerve induced neuropathic pain in mice. Research Journal of Pharmacy and Technology 2023; 16(6):2591-0. doi: 10.52711/0974-360X.2023.00425   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-6-3


REFERENCES:
1.    Walters ET. Peripheral mechanisms contributing to central neuropathic pain following SCI. In: Spinal Cord Injury Pain. Elsevier; 2022:353-371. DOI: 10.1016/B978-0-12-818662-6.00006-6.
2.    Ismail CAN, Long I. Painful diabetic neuropathy: The roles of microglia. In: Features and Assessments of Pain, Anaesthesia, and Analgesia. Elsevier; 2022:139-148. DOI: 10.1016/B978-0-12-818988-7.00029-7.
3.    Muthuraman A, Kaur P, Boparai PS, Mall R. Mitochondrial dysfunction: A key player in the pathogenesis of neurodegeneration associated neuropathic pain syndrome. In: Mitochondrial Diseases and Therapy. SM Group; 19.
4.    Kasanetz F, Acuña MA, Nevian T. Anterior cingulate cortex, pain perception, and pathological neuronal plasticity during chronic pain. In: The Neurobiology, Physiology, and Psychology of Pain. Elsevier; 2022:193-202. DOI: 10.1016/B978-0-12-820589-1.00018-X.
5.    Nudell Y, Dym H, Sun F, Benichou M, Malakan J, Halpern LR. Pharmacologic management of neuropathic pain. Oral and Maxillofacial Surgery Clinics of North America. 2022;34(1):61-81. DOI: 10.1016/j.coms.2021.09.002.
6.    Banerjee J, Padmalatha H, Chanda R. Method development and validation for the simultaneous estimation of eplarestat and pragabalin in bulk and pharmaceutical formulation by using RP-HPLC. Asian Journal of Pharmaceutical Analysis. 2018;8(3):174-180. DOI: 10.5958/2231-5675.2018.00032.7.
7.    Muthuraman A. Investigations on ameliorative effect of Acorus Calamus in experimentally induced peripheral neuropathy. 2012.
8.    Christapher P, Muthuraman A, Zhang L, Jordon KS, Jonathan KH. Effect of methanol extract of Polygonum minus on neuropathic pain and cognitive dysfunction in rats. Int J Nutr Pharmacol Neurol Dis. 2021;11(2):154. DOI: 10.4103/ijnpnd.ijnpnd_109_20.
9.    Muthuraman A, Kaur J. Antimicrobial nanostructures for neurodegenerative infections: Present and future perspectives. In: Nanostructures for Antimicrobial Therapy. Elsevier; 2017:139-167. DOI: 10.1016/B978-0-323-46152-8.00006-8.
10.    Ramesh M, Muthuraman A. Computer-aided drug discovery (CADD) approaches for the management of neuropathic pain. CTMC. 2021;21(32):2856-2868. DOI: 10.2174/1568026621666211122161932.
11.    Bhardwaj, HC, Muthuraman, A, Hari, KSL, et al. Antioxidative and anti-inflammatory potentials of ambroxol in ameliorating vincristine induced peripheral neuropathic pain in rats. J Neuroinfect Dis. 2016;07(01). DOI: 10.4172/2314-7326.1000202.
12.    Mishra MK, Kukal S, Paul PR, et al. Insights into structural modifications of valproic acid and their pharmacological profile. Molecules. 2021;27(1):104. DOI: 10.3390/molecules27010104.
13.    Muthuraman A, Singh N, Jaggi AS, Ramesh M. Drug therapy of neuropathic pain: current developments and future perspectives. Curr Drug Targets. 2014;15(2):210-253.
14.    Kaur S, Muthuraman A. Role of neuropeptides and ginsenoside Rg1 in peripheral nerve injury-induced neuropathic pain in mice. EC Pharmacology an d Toxicology. 2020;8:65-77.
15.    Ashawat MS. Efficacy of diversified therapeutics agents in the management of peripheral neuropathy efficacy of diversified therapeutics agents in the management of peripheral neuropathy. Asian Journal of Research in Pharmaceutical Sciences. 2013;3(4):151-160.
16.    Muthuraman A, Singh N, Jaggi AS. Effect of hydroalcoholic extract of Acorus calamus on tibial and sural nerve transection-induced painful neuropathy in rats. J Nat Med. 2011;65(2):282-292. DOI: 10.1007/s11418-010-0486-6.
17.    Muthuraman A, Diwan V, Jaggi AS, Singh N, Singh D. Ameliorative effects of Ocimum sanctum in sciatic nerve transection-induced neuropathy in rats. Journal of Ethnopharmacology. 2008;120(1):56-62. DOI: 10.1016/j.jep.2008.07.049.
18.    Thiagarajan VRK, Shanmugam P, Krishnan UM, Muthuraman A, Singh N. Ameliorative potential of Butea monosperma on chronic constriction injury of sciatic nerve induced neuropathic pain in rats. An Acad Bras Ciênc. 2012;84(4):1091-1104. DOI: 10.1590/S0001-37652012005000063.
19.    Thiagarajan VRK, Shanmugam P, Krishnan UM, Muthuraman A, Singh N. Antinociceptive effect of Butea monosperma on vincristine-induced neuropathic pain model in rats. Toxicol Ind Health. 2013;29(1):3-13. DOI: 10.1177/0748233711432573.
20.    Muthuraman A, Shaikh SA, Ramesh M, Sikarwar MS. The structure–activity relationship of marine products for neuroinflammatory disorders. In: Studies in Natural Products Chemistry. Vol 70. Elsevier; 2021:151-194. DOI: 10.1016/B978-0-12-819489-8.00013-2.
21.    Forouzanfar F, Hosseinzadeh H. Medicinal herbs in the treatment of neuropathic pain: a review. Iranian Journal of Basic Medical Sciences 2018;21:347. DOI: 10.22038/IJBMS.2018.24026.6021.
22.    Christapher P, Muthuraman A, Zhang L, Jordon KS, Jonathan KH. Effect of methanol extract of Polygonum minus on neuropathic pain and cognitive dysfunction in rats. Int J Nutr Pharmacol Neurol Dis. 2021;11(2):154. DOI: 10.4103/ijnpnd.ijnpnd_109_20.
23.    Sharma M, Gupta PK, Gupta P, Garabadu D. Antinociceptive activity of standardized extract of Bacopa monnieri in different pain models of zebrafish. Journal of Ethnopharmacology. 2022;282:114546. DOI: 10.1016/j.jep.2021.114546.
24.    Üstün R, Oğuz EK, Şeker A, Korkaya H. Thymoquinone protects DRG neurons from axotomy-induced cell death. Neurological Research. 2018;40(11):930-937. DOI: 10.1080/01616412.2018.1504157.
25.    Rao PN, Mainkar O, Bansal N, et al. Flavonoids in the treatment of neuropathic pain. Curr Pain Headache Rep. 2021;25(7):43. DOI: 10.1007/s11916-021-00959-y.
26.    Chang B tao, Jiang H zhong, Wei Y jing, et al. Mangiferin: Analgesic properties in neuropathic pain, molecular docking and meta-analysis. Phytomedicine Plus. 2022;2(1):100170. DOI: 10.1016/j.phyplu.2021.100170.
27.    Kulkantrakorn K. Capsaicin: Features usage in diabetic neuropathic pain. In: Treatments, Mechanisms, and Adverse Reactions of Anesthetics and Analgesics. Elsevier; 2022:365-374. DOI: 10.1016/B978-0-12-820237-1.00032-6.
28.    Lee JY, Choi HY, Park CS, Kim DH, Yune TY. Total saponin extract, ginsenoside Rb1, and compound K alleviate peripheral and central neuropathic pain through estrogen receptors on rats. Phytotherapy Research. 2021;35(4):2119-2132. DOI: 10.1002/ptr.6960.
29.    Sung WS, Jeon SR, Hong YJ, et al. Efficacy, safety, and cost-effectiveness analysis of adjuvant herbal medicine treatment, Palmijihwang-hwan, for chronic low back pain: a study protocol for randomized, controlled, assessor-blinded, multicenter clinical trial. Trials. 2019;20(1):778. DOI: 10.1186/s13063-019-3776-7.
30.    Mystrioti C, Koursari S, Xenidis A, Papassiopi N. Hexavalent chromium reduction by gallic acid. Chemosphere. 2021;273:129737. DOI: 10.1016/j.chemosphere.2021.129737.
31.    Lu ST, Yu JY, Hu Z, Zhang LY, Huang DJ, Liao MN. Evaluation of the potential anti-alcoholism activity of chitosan grafted with gallic acid. J Phys: Conf Ser. 2021;1765(1):012018. DOI: 10.1088/1742-6596/1765/1/012018.
32.    Abdelhalim A, Mahmoud SayedAM, Nur N, Shaban M, Mansour S, Ibrahim S. Cardioprotective effects of gallic acid on an isoprenaline-induced myocardial infarction rat model. Int J Nutr Pharmacol Neurol Dis. 2021;11(2):174. DOI: 10.4103/ijnpnd.ijnpnd_100_20.
33.    Goyal R, Patel S. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats. Phcog Res. 2011;3(4):239. DOI: 10.4103/0974-8490.89743.
34.    Blas-Valdivia V, Franco-Colín M, Rojas-Franco P, Chao-Vazquez A, Cano-Europa E. Gallic acid prevents the oxidative and endoplasmic reticulum stresses in the hippocampus of adult-onset hypothyroid rats. Front Pharmacol. 2021;12:671614. DOI: 10.3389/fphar.2021.671614.
35.    Kaur S, Muthuraman A. Ameliorative effect of gallic acid in paclitaxel-induced neuropathic pain in mice. Toxicology Reports. 2019;6:505-513. DOI: 10.1016/j.toxrep.2019.06.001.
36.    Nandhini S, Radha R, Vadivu R. Docking of hematoporphyrin on various anticancer drugs targeting enzymes. Asian Journal of Pharmaceutical Research. 2016;6(3):123-130. DOI: 10.5958/2231-5691.2016.00019.8.
37.    Yu Z, Song F, Jin YC, et al. Comparative pharmacokinetics of gallic acid after oral administration of gallic acid monohydrate in normal and isoproterenol-induced myocardial infarcted rats. Front Pharmacol. 2018;9:328. DOI: 10.3389/fphar.2018.00328.
38.    Tawfeeq TA, Jasim GA, Nasser AA, Al-Sudani BT. Isolation of lupeol and gallic acid with cytotoxic activity of two different extracts from the leaves of Iraqi Conocarpus erectus L. Research Journal of Pharmacy and Technology. 2021;14(7):3495-3503. DOI: 10.52711/0974-360X.2021.00606.
39.    Bai J, Zhang Y, Tang C, et al. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomedicine & Pharmacotherapy. 2021;133:110985. DOI: 10.1016/j.biopha.2020.110985.
40.    Xiao Z, Liao M, He Y, et al. Pregabalin alleviates postherpetic neuralgia by downregulating spinal TRPV1 channel protein. Trop J Pharm Res. 2021;20(11):2287-2292. DOI: 10.4314/tjpr.v20i11.8.
41.    Ma W, Eisenach JC. Chronic constriction injury of sciatic nerve induces the up-regulation of descending inhibitory noradrenergic innervation to the lumbar dorsal horn of mice. Brain Research. 2003;970(1-2):110-118. DOI: 10.1016/S0006-8993(03)02293-5.
42.    Kaur P, Muthuraman A, Kaur J. Ameliorative potential of angiotensin-converting enzyme inhibitor (ramipril) on chronic constriction injury of sciatic nerve induced neuropathic pain in mice. J Renin Angiotensin Aldosterone Syst. 2015;16(1):103-112. DOI: 10.1177/1470320314556171.
43.    Yoon C, Wook YY, Sik NH, Ho KS, Mo CJ. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain. 1994;59(3):369-376. DOI: 10.1016/0304-3959(94)90023-X.
44.    Erichsen HK, Blackburn-Munro G. Pharmacological characterisation of the spared nerve injury model of neuropathic pain. Pain. 2002;98(1):151-161. DOI: 10.1016/S0304-3959(02)00039-8.
45.    Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32(1):77-88. DOI: 10.1016/0304-3959(88)90026-7.
46.    D’Amour FE, Smith DL. A method for determining loss of pain sensation. Journal of Pharmacology and Experimental Therapeutics. 1941;72(1):74-79.
47.    Takagi H, Inukai T, Nakama M. A modification of Haffner’s method for testing analgesics. Japanese Journal of Pharmacology. 1966;16(3):287-294. DOI: 10.1254/jjp.16.287.
48.    Deuis JR, Dvorakova LS, Vetter I. Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci. 2017;10:284. DOI: 10.3389/fnmol.2017.00284.
49.    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1979;95(2):351-358. DOI: 10.1016/0003-2697(79)90738-3.
50.    Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-888.
51.    Severinghaus JW, Ferrebee JW. Calcium determination by flame photometry; methods for serum, urine, and other fluids. J Biol Chem. 1950;187(2):621-630.
52.    Muthuraman A, Jaggi AS, Singh N, Singh D. Ameliorative effects of amiloride and pralidoxime in chronic constriction injury and vincristine induced painful neuropathy in rats. European Journal of Pharmacology. 2008;587(1-3):104-111. DOI: 10.1016/j.ejphar.2008.03.042.
53.    Muthuraman A, Singh N. Neuroprotective effect of saponin rich extract of Acorus calamus L. in rat model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain. J Ethnopharmacol. 2012;142(3):723-731. DOI: 10.1016/j.jep.2012.05.049.
54.    Di Wang H, Pagano PJ, Du Y, et al. Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circulation Research. 1998;82(7):810-818. DOI: 10.1161/01.RES.82.7.810.
55.    Patriarca P, Dri P, Snidero M. Interference of myeloperoxidase with the estimation of superoxide dismutase activity. J Lab Clin Med. 1977;90(2):289-294.
56.    Grisham MB, Specian RD, Zimmerman TE. Effects of nitric oxide synthase inhibition on the pathophysiology observed in a model of chronic granulomatous colitis. J Pharmacol Exp Ther. 1994;271(2):1114-1121.
57.    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275.
58.    Adedara IA, Owumi SE, Oyelere AK, Farombi EO. Neuroprotective role of gallic acid in aflatoxin B 1 ‐induced behavioral abnormalities in rats. J Biochem Mol Toxicol. 2021;35(3). DOI: 10.1002/jbt.22684.
59.    Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiological Reviews. 2014;94(1):81-140. DOI: 10.1152/physrev.00023.2013.
60.    Angelova PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radical Biology and Medicine. 2021;173:52-63. DOI: 10.1016/j.freeradbiomed.2021.07.003.
61.    Sahu D, Bhushan S, Das D, Debnath K, Barik L, Meena V, Singh V, Dixit K, Prasad PV. Potential Ayurvedic herbs for neurodegenerative diseases: A review. Research journal of Pharmacology and Pharmacodynamics. 2021;13(2):69-74. DOI: 10.52711/2321-5836.2021.00015.
62.    Ren C, Chen M, Mu G, Peng S, Liu X, Ou C. NLRP3 inflammasome mediates neurodegeneration in rats with chronic neuropathic pain. Shock. 2021;56(5):840-849. DOI: 10.1097/SHK.0000000000001832.
63.    Muthuraman A, Rishitha N, Paramakrishnan N, Mahendran B, Ramesh M. Role of lipid peroxidation process in neurodegenerative disorders. In: Ahmed Mansour M, ed. Lipid Peroxidation Research. IntechOpen; 2020. DOI: 10.5772/intechopen.81188.
64.    Selvakumar K, Madhan R, Srinivasan G, Baskar V. Antioxidant assays in pharmacological research. Asian Journal of Pharmacy and Technology. 2011;1(4):99-103. DOI: 10.5958/2231–5713.
65.    Ariharasivakumar G, Karthikaa T, Nongkhlaw R, Packialakshmi P. Evaluation of leaf extracts of Simarouba glauca on Experimentally Induced Inflammatory Bowel Diseases in Wistar rats. Research Journal of Pharmacy and Technology. 2020;13(4):1888-1894. DOI: 10.5958/0974-360X.2020.00340.6.
66.    Guediri I, Boubekri C, Smara O, Lanez T. Total phenolic contents and determination of antioxidant activity by DPPH, FRAP, and cyclic voltammetry of the fruit of Solanum nigrum (black nightshade) growing in the south of Algeria. Asian Journal of Research in Chemistry. 2021;14(1):47-55. DOI: 10.5958/0974-4150.2021.00008.0
67.    Kaur S, Muthuraman A. Ginsenoside Rg1 prevents the chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in mice. J Pharm Sci Res. 2020;12:890-898.
68.    Fonseca-Rodrigues D, Amorim D, Almeida A, Pinto-Ribeiro F. Emotional and cognitive impairments in the peripheral nerve chronic constriction injury model (CCI) of neuropathic pain: A systematic review. Behavioural Brain Research. 2021;399:113008. DOI: 10.1016/j.bbr.2020.113008.
69.    Martínez-Lavín M, Vargas A, Silveira LH, Amezcua-Guerra LM, Martínez-Martínez LA, Pineda C. Complex regional pain syndrome evolving to full-nlown fibromyalgia: A proposal of common mechanisms. J Clin Rheumatol. 2021;27(6S):S274-S277. DOI: 10.1097/RHU.0000000000001304.
70.    Nie H, Liu B, Yin C, et al. Gene expression profiling of contralateral dorsal root ganglia associated with mirror-image pain in a rat Mmdel of complex regional pain syndrome Type-I. JPR. 2021;Volume 14:2739-2756. DOI: 10.2147/JPR.S322372
71.    Zhou X, Du J, Qing L, et al. Identification of sensory and motor nerve fascicles by immunofluorescence staining after peripheral nerve injury. J Transl Med. 2021;19(1):207. DOI: 10.1186/s12967-021-02871-w.
72.    Carmichael J, Fadavi H, Ishibashi F, Shore AC, Tavakoli M. Advances in screening, early diagnosis and accurate staging of diabetic neuropathy. Front Endocrinol. 2021;12:671257. DOI: 10.3389/fendo.2021.671257.
73.    Rajasekhar KK, Shankarananth V, Rajagowtham M, Kumar BG, Thejnayan B, Pavankumar M. Local anaesthetic activity of Calotropis gigantea Latex in Frog and Guinea Pig. Research Journal of Pharmacology and Pharmacodynamics. 2010;2(2):178-180. DOI: 10.5958 2321-5836.
74.    Köller H, Kieseier BC, Jander S, Hartung HP. Chronic inflammatory demyelinating polyneuropathy. New England Journal of Medicine. 2005;352(13):1343-1356. DOI: 10.1056/NEJMra041347.
75.    Degrugillier L, Prautsch KM, Schaefer DJ, et al. A new model of chronic peripheral nerve compression for basic research and pharmaceutical drug testing. Regenerative Medicine. 2021;16(10):931-947. DOI: 10.2217/rme-2020-0129.
76.    Mahmoud MF, Rezq S, Alsemeh AE, et al. Potamogeton perfoliatus L. extract attenuates neuroinflammation and neuropathic pain in sciatic nerve chronic constriction injury-induced peripheral neuropathy in rats. Front Pharmacol. 2021;12:799444. DOI: 10.3389/fphar.2021.799444.
77.    Stucky CL, Mikesell AR. Cutaneous pain in disorders affecting peripheral nerves. Neuroscience Letters. 2021;765:136233. DOI: 10.1016/j.neulet.2021.136233.
78.    Sharma S, Vas P, Rayman G. Small fiber neuropathy in diabetes polyneuropathy: Is it time to change? J Diabetes Sci Technol. Published online April 12, 2021:193229682199643. DOI: 10.1177/1932296821996434.
79.    Fisher CJ, Yaksh TL, Bruno K, Eddinger KA. Basic Science of Pain. In: Pain Care Essentials and Innovations. Elsevier; 2021:1-14. DOI: 10.1016/B978-0-323-72216-2.00001-6.
80.    Fonseca-Rodrigues D, Laranjeira I, Barbosa J, et al. Nociceptive, emotional, electrophysiological, and histological characterization of the chronic constriction injury model in female Wistar Han rats. Brain Research Bulletin. 2021;167:56-70. DOI: 10.1016/j.brainresbull.2020.11.018.
81.    Zamudio-Cuevas Y, Andonegui-Elguera MA, Aparicio-Juárez A, et al. The enzymatic poly(gallic acid) reduces pro-inflammatory cytokines in vitro, a potential application in inflammatory diseases. Inflammation. 2021;44(1):174-185. DOI: 10.1007/s10753-020-01319-5.
82.    Obafemi TO, Owolabi OV, Omiyale BO, et al. Combination of donepezil and gallic acid improves antioxidant status and cholinesterases activity in aluminum chloride-induced neurotoxicity in Wistar rats. Metab Brain Dis. 2021;36(8):2511-2519. DOI: 10.1007/s11011-021-00749-w.
83.    Nahar N, Mohamed S, Mustapha NM, Fong LS, Mohd Ishak NI. Gallic acid and myricetin‐rich Labisia pumila extract mitigated multiple diabetic eye disorders in rats. J Food Biochem. 2021;45(11). DOI: 10.1111/jfbc.13948.
84.    Farbood Y, Sarkaki A, Hashemi S, Mansouri MT, Dianat M. The effects of gallic acid on pain and memory following transient global ischemia/reperfusion in Wistar rats. Avicenna J Phytomed. 2013;3(4):329-340.
85.    Terayama R, Uchibe K. Reorganization of synaptic inputs to spinal dorsal horn neurons in neuropathic pain. International Journal of Neuroscience. Published online January 18, 2021:1-7. DOI: 10.1080/00207454.2021.1873980.
86.    Tong C, Zhengyao Z, Mei L, Dongpo S, Qian H, Fengqun M. Pregabalin and gabapentin in patients with spinal cord injury-related neuropathic pain: A network meta-analysis. Pain Ther. 2021;10(2):1497-1509. DOI: 10.1007/s40122-021-00302-8
87.    Amin B, Taheri M, Hosseinzadeh H. Effects of intraperitoneal thymoquinone on chronic neuropathic pain in rats. Planta Med. 2014;80(15):1269-1277. DOI: 10.1055/s-0034-1383062.
88.    Tiwari V, Kuhad A, Chopra K. Amelioration of functional, biochemical and molecular deficits by epigallocatechin gallate in experimental model of alcoholic neuropathy. European journal of pain. 2011;15:286-292. DOI: 10.1016/j.ejpain.2010.07.005.
89.    Kuhad A, Sharma S, Chopra K. Lycopene attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. European Journal of Pain. 2008;12(5):624-632. DOI: 10.1016/j.ejpain.2007.10.008.
90.    Kuhad A, Chopra K. Tocotrienol attenuates oxidative–nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology. 2009;57(4):456-462. DOI: 10.1016/j.neuropharm.2009.06.013.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available