Author(s): J. S. Karnewar, V. K. Shandilya

Email(s): jay.skumar9@gmail.com , vkshandilya@gmail.com

DOI: 10.52711/0974-360X.2023.00482   

Address: J. S. Karnewar1*, V. K. Shandilya2
1Research Scholar, Sipna College of Engineering and Technology, Amravati, Amravati (MS), India.
2Professor and Head, Sipna College of Engineering and Technology, Amravati Amravati (MS), India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 6,     Year - 2023


ABSTRACT:
Cardiovascular Diseases (CVD’s) forms the vital basis of death in the world population. The human mortality rate due to CVD’s can be reduced with early detection and prevention of cardiac threat. Electrocardiogram (ECG) indicates the state of the cardiac heart and thus, acts as a standard to the cardiac health of an individual. ECG is a non-invasive, clinical therapeutic agent, which can be used to detect CVD in early stage and prognosis of threaten cardiac diseases. Since, the ECG is an abruptly changing, non-stationary waveform; the anomalies are non-periodic and may appear at varied fluctuations and intervals on random scale. Manual observation of ECG can be hectic in time and may be misleading to medical experts. So, it is necessary to endorse a computer assist framework for rapid and precise diagnosis of CVD’s. This paper deals with the automated characterization and detection of myocardial infarction (MI), dilated cardiomyopathy (DCM) diseases using morphological features extracted from ECG signal and machine learning approach. Our proposed approach attained maximum classification accuracy 87.5% for MIT-BIH Arrhythmia dataset and 99.33% accuracy for BIDMC Congestive Heart Failure (CHF) dataset with K-nearest neighbor (kNN) clustering and decision tree classifier with entropy criterion. The clinical experts can use our methodology to make precise prognosis of mentioned CVDs. Hence, survival prospect of a patient can be notably enlarged by prompt detection and clinical therapy of CVDs.


Cite this article:
J. S. Karnewar, V. K. Shandilya. Myocardial Infarction Detection using Morphological Features of ECG Signal. Research Journal of Pharmacy and Technology 2023; 16(6):2921-6. doi: 10.52711/0974-360X.2023.00482

Cite(Electronic):
J. S. Karnewar, V. K. Shandilya. Myocardial Infarction Detection using Morphological Features of ECG Signal. Research Journal of Pharmacy and Technology 2023; 16(6):2921-6. doi: 10.52711/0974-360X.2023.00482   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-6-60


REFERENCES:
1.    World Health Organization. Cardiovascular Diseases (CVD’s). Information Year 2021, Retrieved from https://www.who.int/en/news-room/fact-sheets/cardiovaculr-diseases-(cvd).
2.    S. Mendis, P. Puska, B. Norrving, Global atlas on cardiovascular disease prevention and control, World Health Organization (WHO) in collaboration with the World Heart Federation and the World Stroke Organization, 155p. 2011. https://apps.who.int/iris/handle/10665/44701.
3.    C.D. Mathers, D. Loncar. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3 (11) (2006) e442, DOI: 10.1371/journal.pmed.0030442.
4.    Bloom De, E.T. Cafiero, E. Jane-Lopis. The Global Economic Burden of Non-communicable Diseases. Switzerland: World  Economic Forum, Geneva, 2013 https://docs/WEF_Harvard_HE_GlobalEconomicBurdenNonCommunicableDiseases_2011.
5.    Varshita Veerni Jaya Ratna, Monika Vempadapu, Raj kiran Kolakota, Vinodkumar Mugada. Risk of Cardiovascular Disease in Schizophrenia: A Mini Review. Asian J. Res. Pharm. Sci. 2019; 9(2):131-136.DOI:10.5958/2231-5659.2019.00019.5.
6.    A. Valarmathi, Vijayarani Prince. Effectiveness of Structured Teaching Programme Regarding Cardiac Rehabilitation in terms of  Knowledge, attitude and Practice among Patients with Myocardial Infarction at KMC Hospital, Trichy. Int. J. of Advances in Nur. Management. 2018; 6(1): 10-14 DOI: 10.5958/2454-2652.2018.00003.3.
7.    J. Chee, S.C. Seow. The electrocardiogram in: UR Acharya, JS Suri, JAE Spaan, SM Krishnan (Eds.). Advances in Cardiac Signal Processing, Springer-Verlag, Berlin Heidelberg, 2007, pp.1–53. https://doi.org/10.1007/978-3-540-36675-1_1.
8.    Muhammad Adam, Oh ShuLih, Vidya K Sudarshan, Joel EW Koh, Yuki Hagiwara, Tan Jen Hong, Tan Ru San, U Rajendra Acharya. Automated Characterization of Cardiovascular Diseases Using Relative Wavelet  Nonlinear Features Extracted from ECG Signals. Computer Methods and Programs in Biomedicine, 2018, Computer Methods and Programs in Biomedicine 161 (2018) 133–143 doi: 10.1016/j.cmpb.2018.04.018.
9.    U.R. Acharya, H. Fujita, A. Muhammad, S.L. Oh, V.K. Sudarshan, J.E.W. Koh, Y. Hagiwara, K.C. Chua, K.P. Chua, R.S. Tan, Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study, Inf. Sci. 377 (2017) 17–29 https://doi.org/10.1016/j.ins.2016.10.013.
10.    J.E. Tarride, M. Lim M, M. DesMeules M, et al., A review of the cost of cardiovascular disease, Can. J. Cardiol. 25 (2009) PP. e195–e202 doi: 10.1016/s0828-282x(09)70098-4.
11.    Manjunath H, Jince Thomos, Shivappa Maranabasari, Shrikant Desai. A Study to Evaluate the effectiveness of Structured Teaching   Programme (STP) on Knowledge regarding door to balloon care of patients with Myocardial Infarction among staff nurses at selected Hospitals, Bangalore. Int. J. of Advances in Nur. Management. 2020; 8(1):57-62 DOI:10.5958/2454-2652.2020.00014.1.
12.    Anita Kose Peter, Larisa Martha Sams. Assessment of the quality of life and coping strategies among male and female patients attending OPD with myocardial infarction in selected hospitals at Mangaluru. Int. J. Nur. Edu. and Research 4(1): Jan.-Mar., 2016; Page 01-06 doi: 10.5958/2454-2660.2016.00001.6.
13.    V. Jahmunah, ShuLih Oh, Joel Koh En We, Edward J Ciacc, Kuang Chua, Tan Ru San, U. Rajendra Acharya, “Computer-aided diagnosis of congestive heart failure using ECG signals – A review”,Science Direct, Physica Medica 62 (2019),  pp. 95–104. DOI: 10.1016/j.ejmp.2019.05.004.
14.    A. L. Goldberger, L.A .N. Amaral, L. Glass, J.M. Hausdorff, P.C.H Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley. Physio Bank, physio Toolkit, and physio Net: components of a new research resource for complex physiologic signals. Circulation. 101 (23) (2000), pp. 215–220. http://ignited.in/I/a/304380.
15.    S. Huang, B. Chuang, Y. Lin, C. Hung and H. Ma, "A Congestive Heart Failure Detection System via Multi-Input Deep Learning Networks," 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1-6. Doi: 10.1109/GLOBECOM38437.2019.9013460.
16.    Leandro L. Minku, Student Member, IEEE, and Xin Yao, Fellow, IEEE. DDD: A New Ensemble Approach for Dealing with Concept Drift.  IEEE Transactions on Knowledge and Data Engineering, Volume 24, Issue 4, April 2012, pp. 619-633. . http://doi.org/10.22214/ijraset.2017.4179.
17.    Divya Tomar, R Vel Murugan, Deepa Chugh. Effectiveness of Assisted self directed learning on knowledge regarding basic Electrocardiogram and Interpretation of Myocardial Infarction among staff nurses. Int. J. Nur. Edu. and Research. 2020; 8(1):98-100 doi:10.5958/2454-2660.2020.00020.4.
18.    Preeti Tiwari, Rakesh K Patel. Cardioprotective activity of Ashwagandharishta on Isoproterenol Induced Myocardial Infarction. Research J. Pharmacology and Pharmacodynamics. 2012; 4(5): 294-298 DOI: 10.5958 2321-5836.
19.    Manoj S. Pagare, Hardik Joshi, Leena Patil, Vilasrao J. Kadam. Human Milk: Excellent Anticancer Alternative. Research J. Pharm. and Tech. 5(1): Jan. 2012; Page 14-19. DOI: 10.5958/0974-360X
20.    S. Renuka, Gowri Sethu. Regeneration after Myocardial Infarction. Research J. Pharm. and Tech. 8(6): June, 2015; Page 738-741 DOI: 10.5958/0974-360X.2015.00117.1.
21.    M. Trimale, Chilveri. A Review: FIR Filter Implementation. 2nd IEEE International Conference on Recent Trends in Electronics Information and Communication Technology. May 19-20, 2017. Doi:10.1109/RTEICT.2017.8256573.
22.    J.C.Goswami, A.K.Chan. Fundamentals of wavelets theory, algorithms, and applications. Texas A and M University. John Wiley  and  Sons, Inc. ISBN: 978-0-470-93464-7.
23.    S.Z.Mahmoodabbadi, A. Ahmadian, M.D. Abolhasani. ECG Feature Extraction using Daubeches Wavelts. Proceedings of the Fifth Iasted International Conference on Visualization, Imaging, and Image Proceedings, 7-9 Sept 2005.
24.    J.S.Karnewar, Dr.V.K.Shandilya. Automated Characterization of ECG Signal using Discrete Wavelet Transform. DAS Zeichen Journal.  Volume 6, Issue 9, May 2020, pp. 50-63. DOI:15.10089.ZJ.2020.V6I3.285311.2131.
25.    J. Han, M. Kamber, J. Pei. Data Mining: Concepts and Techniques. Morgan Kauf-mann, 2005 ISBN: 9780123814791.
26.    S. Sarumathy, T. S. Shanmugarajan, K. G. Suresh Rao, N. Benazeer Begum. Significance of Clinical Laboratory Values as early indicators of Myocardial Infarction - A Retrospective Study. Research J. Pharm. and Tech. 2018; 11(4): 1563-1565 DOI: 10.5958/0974-360X.2018.00291.3.
27.    Gulnara Bedelbayeva, Zhannat Nurmakhanova, Murat Almukhambetov, Nazima Zarubekova, Ainur Nuftieva. Factors of the Complicated Course of the Myocardial Infarction in Men and Women. Research J. Pharm. and Tech. 2018; 11(5): 1737-1744 DOI: 10.5958/0974-360X.2018.00323.2.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available