Author(s): Irma Josefina Savitri, Hendi Tri Medianto, Neira Najatus Sakinah, Amelia Putri Priambodo, Vinda Putri Kalista, Padmini Hari, Ernie Maduratna

Email(s): Irma-j-s@fkg.unair.ac.id

DOI: 10.52711/0974-360X.2023.00599   

Address: Irma Josefina Savitri1*, Hendi Tri Medianto1, Neira Najatus Sakinah1,
Amelia Putri Priambodo1,Vinda Putri Kalista1, Padmini Hari2,1, Ernie Maduratna1
1Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya – Indonesia.
2Department of Periodontology, Faculty of Dentistry, Mahsa University, Malaysia.
*Corresponding Author

Published In:   Volume - 16,      Issue - 8,     Year - 2023


ABSTRACT:
Background: Stem cell-based tissue engineering is a potential strategy for periodontal tissue regeneration. Besides the advantages of stem cells as periodontal tissue regenerative therapy, this therapy must also be able to prevent and control the possibility of inflammation that occurs. Robusta green beans contain anti-inflammationsubstances that may decrease excessive inflammation in stem cell therapy. Purpose: To analyze IL-1ß levels after giving Robusta green bean extract to DPSC induced by LPS P. gingivalis. Materials and Methods: This study used DPSC from the extraction of premolar teeth of orthodontic patients. The viability test was performed on the LPS P. gingivalis at 0.5; 1; 5; 10µg/ml and robusta green bean extract at 0.0625%; 0.125%; 0.25%; 0.5%to determine non toxic concentration. The treatment group was divided into 4 groups, the control group, the DPSC+LPS group, the DPSC + LPS + 0.125% Robusta green bean extract group, and the DPSC+LPS+0.0625%Robusta green bean extract group.Each group was observed at 24, 48, and 72 hours. ELISA test was performed on the supernatant to measure IL-1ß levels. Results: The level of IL-1ß in the Robusta green bean extract group was significantly lower (p <0.05) than the group without Robusta green bean extract at all observation times. Conclusion: Robusta green bean extract concentrations of 0.125% and 0.0625% can significantly reduce IL-1ß levels in DPSC induced by LPS P. gingivalis, which is the most effective at reducing IL-1ß levels was 0.125%.


Cite this article:
Irma Josefina Savitri, Hendi Tri Medianto, Neira Najatus Sakinah, Amelia Putri Priambodo, Vinda Putri Kalista, Padmini Hari, Ernie Maduratna. The Role of Robusta Green Bean Extract in Decreasing Il-1β Levels on Dental Pulp Stem Cells (Dpsc) Induced by Lps Porphyromonas Gingivalis. Research Journal of Pharmacy and Technology 2023; 16(8):3638-3644. doi: 10.52711/0974-360X.2023.00599

Cite(Electronic):
Irma Josefina Savitri, Hendi Tri Medianto, Neira Najatus Sakinah, Amelia Putri Priambodo, Vinda Putri Kalista, Padmini Hari, Ernie Maduratna. The Role of Robusta Green Bean Extract in Decreasing Il-1β Levels on Dental Pulp Stem Cells (Dpsc) Induced by Lps Porphyromonas Gingivalis. Research Journal of Pharmacy and Technology 2023; 16(8):3638-3644. doi: 10.52711/0974-360X.2023.00599   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-8-19


REFERENCES:
1.    American Academy of Periodontology Task Force Report on the Update to the 1999 Classification of Periodontal Diseases and Conditions. J Periodontol. 2015;86 (7): 835-8.doi: 10.1902/jop.2015.157001
2.    Tonetti, Maurizio S., Søren Jepsen, Lijian Jin  and JO. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. J Clin Periodontol. 2017;44(5):456–62. https://doi.org/10.1111/jcpe.12732
3.    Franceschi C, Campisi J. Chronic inflammation (Inflammaging) and its potential contribution to age-associated diseases. Journals of Gerontology - Series A Biological Sciences and Medical Sciences. 2014;69(1): S4-9.https://doi.org/10.1093/gerona/glu057
4.    Pahwa R, Jialal I. Chronic Inflammation - StatPearls - NCBI Bookshelf. Stat Pearls. 2019.
5.    Preshaw Pm. Section III : Etiology Of Periodontal Diseases Chapter 5 Periodontal Pathogenesis. Twelfth Ed. Carranza’s Clinical Periodontology Expert Consult. Elsevier Inc; 2016, pp:76-100.
6.    Kao RT, Takei HH, Cochran DL, Nevins ML. Chapter: 61 Periodontal Regeneration and Reconstructive Surgery. Twelfth Ed. Carranza’s Clinical Periodontology Expert Consult. Elsevier Inc; 2016, pp: 610-620.e8
7.    Pejcic, A., D. Kojovic, D. Mirkovic  and IM. Stem cells for periodontal regeneration. Balk J Med Genet. 2013;16(1):7–11. https://doi.org/10.2478/bjmg-2013-0012
8.    Giannopoulou C, Kamma JJ, Mombelli A. Effect of inflammation, smoking and stress on gingival crevicular fluid cytokine level. J Clin Periodontol. 2003; 30(2):145-53https://doi.org/10.1034/j.1600-051X.2003.300201.x
9.    Akazawa K, Iwasaki K, Nagata M, Yokoyama N, Ayame H, Yamaki K, Tanaka Y, Honda I, Morioka C, Kimura T, Komaki M. Cell transfer technology for tissue engineering. Inflammation and regeneration. 2017;37(1):1-6.https://doi.org/10.1186/s41232-017-0052-7
10.    Han J, Menicanin D, Gronthos S, Bartold PM. Stem cells, tissue engineering and periodontal regeneration. Australian dental journal. 2014;59:117-30.https://doi.org/10.1111/adj.12100
11.    Vandana KL, Desai R, Dalvi PJ. Autologous stem cell application in periodontal regeneration technique (SAI-PRT) using PDLSCs directly from an extracted tooth-An insight. International journal of stem cells. 2015;8(2):235.https://doi.org/10.15283/ijsc.2015.8.2.235
12.    Yamada Y, Nakamura-Yamada S, Kusano K, Baba S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review. Int J Mol Sci. 2019;20(5). https://doi.org/10.3390/ijms20051132
13.    Yildirim S, Zibandeh N, Genc D, Ozcan EM, Goker K, Akkoc T. The comparison of the immunologic properties of stem cells isolated from human exfoliated deciduous teeth, dental pulp, and dental follicles. Stem Cells Int. 2016;2016:11–3. https://doi.org/10.1155/2016/4682875
14.    Citterio F, Gualini G, Fierravanti L, Aimetti M. Stem cells and periodontal regeneration: present and future. Plastic and Aesthetic Research. 2020;7.https://doi.org/10.20517/2347-9264.2020.29
15.    Hu J, Cao Y, Xie Y, Wang H, Fan Z, Wang J, Zhang C, Wu CT, Wang S. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Research and Therapy. 2016;7(1):1-1.https://doi.org/10.1186/s13287-016-0362-8
16.    Kato H, Taguchi Y, Tominaga K, Umeda M, Tanaka A. Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells. Arch Oral Biol. 2014;59(2):167–75. https://doi.org/10.1016/j.archoralbio.2013.11.008
17.    Tang J, Wu T, Xiong J, Su Y, Zhang C, Wang S, et al. Porphyromonas gingivalis lipopolysaccharides regulate functions of bone marrow mesenchymal stem cells. Cell Prolif. 2015;48(2):239–48. https://doi.org/10.1016/j.archoralbio.2013.11.008
18.    Kizil C, Kyritsis N, Brand M. Effects of inflammation on stem cells: together they strive? EMBO Rep. 2015;16(4):416–26. https://doi.org/10.15252/embr.201439702
19.    Michael S, Achilleos C, Panayiotou T, Strati K. Inflammation shapes stem cells and stemness during infection and beyond. Front Cell Dev Biol. 2016;4(NOV):1–7. https://doi.org/10.3389/fcell.2016.00118
20.    Farah A, de Paula Lima J. Consumption of chlorogenic acids through coffee and health implications. Beverages. 2019;5(1):11.https://doi.org/10.3390/beverages5010011
21.    Maalik A, Bukhari SM, Zaidi A, Shah KH, Khan FA. Chlorogenic acid: A pharmacologically potent molecule. Acta Pol Pharm - Drug Res. 2016;73(4):851–4. PMID: 29648710.
22.    Gao R, Yang H, Jing S, Liu B, Wei M, He P, et al. Protective effect of chlorogenic acid on lipopolysaccharide-induced inflammatory response in dairy mammary epithelial cells. Microb Pathog. 2018;124:178–82. https://doi.org/10.1016/j.micpath.2018.07.030
23.    Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide- stimulated RAW 264.7 cells. Inflamm Res. 2014;63(1):81–90. https://doi.org/10.1007/s00011-013-0674-4
24.    Liu CC, Zhang Y, Dai BL, Ma YJ, Zhang Q, Wang Y, et al. Chlorogenic acid prevents inflammatory responses in IL-1β-stimulated human SW-1353 chondrocytes, a model for osteoarthritis. Mol Med Rep. 2017;16(2):1369–75.
25.    Zhou RP, Deng MT, Chen LY, Fang N, Du C, Chen LP, et al. Shp2 regulates chlorogenic acid-induced proliferation and adipogenic differentiation of bone marrow-derived mesenchymal stem cells in adipogenesis. Mol Med Rep. 2015;11(6):4489–95. https://doi.org/10.3892/mmr.2015.3285
26.    Farhaty N. Tinjauan Kimia Dan Aspek Farmakologi Senyawa Asam Klorogenat Pada Biji Kopi : Review. Farmaka Suplemen. 2018.
27.    Kiattisin K, Nantarat T, Leelapornpisid P. Evaluation of antioxidant and anti-tyrosinase activities as well as stability of green and roasted coffee bean extracts from Coffea arabica and Coffea canephora grown in Thailand. Journal of Pharmacognosy and Phytotherapy. 2016;8(10):182-92.https://doi.org/10.5897/JPP2016.0413
28.    Ayelign A, Sabally K. Determination of chlorogenic acids (CGA) in coffee beans using HPLC. American Journal of Research Communication. 2013;1(2):78-91.www.usa-journals.com, ISSN: 2325-4076
29.    Liang N, Kitts DD. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients. 2015;8(1):1–20. https://doi.org/10.3390/nu8010016
30.    Martauli ED. Analysis of coffee production in Indonesia. JASc (Journal of Agribusiness Sciences). 2018;1(2):112-20.
31.    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences. 2000;97(25):13625-30.https://doi.org/10.1073/pnas.240309797
32.    Bahuguna A, Khan I, Bajpai VK, Kang SC. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh Journal of Pharmacology. 2017;12(2):115-8.https://doi.org/10.3329/bjp.v12i2.30892
33.    Albiero ML, Amorim BR, Casati MZ, Sallum EA, Nociti FH, Silvério KG. Osteogenic potential of periodontal ligament stem cells are unaffected after exposure to lipopolysaccharides. Braz Oral Res. 2017;31:e17. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0017
34.    Ko YJ, Kwon KY, Kum KY, Lee WC, Baek SH, Kang MK, et al. The Anti-Inflammatory Effect of Human Telomerase-Derived Peptide on P. gingivalis Lipopolysaccharide-Induced Inflammatory Cytokine Production and Its Mechanism in Human Dental Pulp Cells. Mediators Inflamm. 2015;2015. https://doi.org/10.1155/2015/385127
35.    Li D, Fu L, Zhang Y, Yu Q, Ma F, Wang Z, et al.The effects of LPS on adhesion and migration of human dental pulp stem cells in vitro. J Dent. 2014;42(10):1327–34. https://doi.org/10.1016/j.jdent.2014.07.007
36.    Nuti N, Corallo C, Chan BMF, Ferrari M, Gerami-Naini B. Multipotent Differentiation of Human Dental Pulp Stem Cells: a Literature Review. Stem Cell Rev Reports. 2016;12(5):511–23. https://doi.org/10.1007/s12015-016-9661-9
37.    Yang X, Li L, Xiao L, Zhang D. Recycle the dental fairy’s package: Overview of dental pulp stem cells. Stem Cell Res Ther. 2018;9(1):1–8. https://doi.org/10.1186/s13287-018-1094-8
38.    Martens W, Wolfs E, Struys T, Politis C, Bronckaers A, Lambrichts I. Expression pattern of basal markers in human dental pulp stem cells and tissue. Cells Tissues Organs. 2012;196(6):490–500. https://doi.org/10.1159/000338654
39.    Nakashima M, Iohara K, Murakami M. Dental pulp stem cells and regeneration. Endod Top. 2013;28(1):38–50.
40.    Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods. 2016;99:62–8. https://doi.org/10.1016/j.ymeth.2015.09.016
41.    Cheng R, Wu Z, Li M, Shao M, Hu T. Interleukin-1β is a potential therapeutic target for periodontitis: a narrative review. Int J Oral Sci. 2020;12(1):1–9. https://doi.org/10.1038/s41368-019-0068-8
42.    Fawzy El-Sayed KM, Elsalawy R, Ibrahim N, Gadalla M, Albargasy H, Zahra N, et al. The Dental Pulp Stem/Progenitor Cells-Mediated Inflammatory-Regenerative Axis. Tissue Eng - Part B Rev. 2019;25(5):445–60. https://doi.org/10.1089/ten.teb.2019.0106
43.    Abnave P, Ghigo E. Role of the immune system in regeneration and its dynamic interplay with adult stem cells. InSeminars in cell and developmental biology 2019; 87:160-168. Academic Press.
44.    Feng X, Feng G, Xing J, Shen B. Repeated lipopolysaccharide stimulation promotes cellular senescence in human dental pulp stem cells (DPSCs). 2014;369–80. https://doi.org/10.1007/s00441-014-1799-7
45.    Yamagishi VT, Torneck CD, Friedman S, Huang GT, Glogauer M. Blockade of TLR2 inhibits Porphyromonas gingivalis suppression of mineralized matrix formation by human dental pulp stem cells. Journal of endodontics. 2011;37(6):812-8.https://doi.org/10.1016/j.joen.2011.03.013
46.    Huang X, Xi Y, Pan Q, Mao Z, Zhang R, Ma X, et al. Caffeic acid protects against IL-1β-induced inflammatory responses and cartilage degradation in articular chondrocytes. Biomed Pharmacother. 2018;107:433–9. https://doi.org/10.1016/j.biopha.2018.07.16

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available