Author(s): Rawan Alsayad, Antoun Laham

Email(s): rawan.alsayad@damascusuniversity.edu.sy

DOI: 10.52711/0974-360X.2023.00643   

Address: Rawan Alsayad*, Antoun Laham
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Damascus City, Syria.
*Corresponding Author

Published In:   Volume - 16,      Issue - 8,     Year - 2023


ABSTRACT:
The aim of the present work was to identify the optimum formulation parameters required to achieve a maximum production yield and entrapment efficacy for Azithromycin-loaded Ethylcellulose microparticles for taste masking of Azithromycin (AZI). Quasi-emulsion solvent evaporation method was employed using Ethylcellulose. Several factors that influence the microparticles such as polymer-to-drug ratio, the inner phase volume (DCM), and the emulsifying agent concentration (PVA) were studied to determine their effects on the production yield, entrapment efficiency, and particle size of microparticle formulations. The formula F3 that provided the highest yield and entrapment efficiency (66.6±0.3%, 86.42±0.05% respectively) was evaluated using Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and Differential scanning calorimetry (DSC). Taste masking assessment performed in vitro. FT-IR study showed that there was no interaction occurring between azithromycin and ethylcellulose. DSC confirmed the conversion of azithromycin from crystalline phase to amorphous phase and entrapped inside the microparticles. SEM micrographs revealed that microparticles were spherical in shape with a porous nature, where no drug crystals on the surface could be observed, indicating an encapsulation of AZI inside the polymeric matrix. In vitro, the taste assessment revealed no azithromycin release in salvia pH which could effectively mask the bitter taste of AZI.


Cite this article:
Rawan Alsayad, Antoun Laham. Investigation of the effects of some process variables on the Azithromycin Microencapsulation by the Quasi-Emulsion Solvent Evaporation Method. Research Journal of Pharmacy and Technology. 2023; 16(8):3909-4. doi: 10.52711/0974-360X.2023.00643

Cite(Electronic):
Rawan Alsayad, Antoun Laham. Investigation of the effects of some process variables on the Azithromycin Microencapsulation by the Quasi-Emulsion Solvent Evaporation Method. Research Journal of Pharmacy and Technology. 2023; 16(8):3909-4. doi: 10.52711/0974-360X.2023.00643   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-8-63


REFERENCES:
1.    Lam PL, Gambari R. Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. J Control Release. 2014;178(1):25-45. doi:10.1016/j.jconrel.2013.12.028
2.    Khandbahale S V. Microencapsulation-A Novel Approach in Drug Delivery: A Review. Asian J Res Pharm Sci. 2020;10(1):39. doi:10.5958/2231-5659.2020.00009.0
3.    KHATTAB A, Nattouf A. Optimization of entrapment efficiency and release of clindamycin in microsponge based gel. Sci Rep. 2021;11(1):23345. doi:10.1038/s41598-021-02826-7
4.    Amelian A, Wasilewska K, Wesoły M, Ciosek-Skibińska P, Winnicka K. Taste-masking assessment of orally disintegrating tablets and lyophilisates with cetirizine dihydrochloride microparticles. Saudi Pharm J. 2017;25(8):1144-1150. doi:10.1016/j.jsps.2017.06.001
5.    Ahmad W, Quazi J, Khan R, Ahmad N, Ansari N. A Comprehensive Review on Microspheres. Asian J Pharm Technol. Published online May 25, 2022:136-140. doi:10.52711/2231-5713.2022.00023
6.    Varela-Fernández R, Bendicho-Lavilla C, Martin-Pastor M, et al. Design, optimization, and in vitro characterization of idebenone-loaded PLGA microspheres for LHON treatment. Int J Pharm. 2022;616:121504. doi:10.1016/j.ijpharm.2022.121504
7.    Pendharkar NA CD. Simultaneous Estimation of Azithromycin and Ambroxol Hydrochloride in Combined Tablet Dosage Form by Multicomponent Mode of Analysis. Asian J Res Chem. 2010;3(2):296-298.
8.    M. Ramesh, M. Kanaka Durga, Sravani A., T. Snehalatha TD. A New Stability Indicating Validated RP-HPLC Method for the Simultaneous Estimation of Azithromycin and Cefixime in Bulk and Pharmaceutical Dosage Forms. Asian J Res Chem. 2012;5(8):1067-1073.
9.    Li J, Li C, Zhang H, et al. Preparation of Azithromycin Amorphous Solid Dispersion by Hot-Melt Extrusion: An Advantageous Technology with Taste Masking and Solubilization Effects. Polymers (Basel). 2022;14(3):495. doi:10.3390/polym14030495
10.    Malode SS, Wagh MP. Formulation and Evaluation of Orodispersible Tablets Containing Taste Masked Mirabegron Resinate. Res J Pharm Technol. Published online September 14, 2021:4736-4742. doi:10.52711/0974-360X.2021.00824
11.    Pawar P.B., M.P. Wagh SNB. Formulation and Evaluation of Taste Masked Fast Dissolving/ Disintegrating Tablets of Hydroxyzine Hydrochloride. Asian J Pharm Technol. 2014;4(2):63-68.
12.    Amin F, Khan S, Shah SMH, et al. A new strategy for taste masking of azithromycin antibiotic: development, characterization, and evaluation of azithromycin titanium nanohybrid for masking of bitter taste using physisorption and panel testing studies. Drug Des Devel Ther. 2018;Volume 12:3855-3866. doi:10.2147/DDDT.S183534
13.    Rajesh AM, Popat KM. Taste masking of azithromycin by resin complex and sustained release through interpenetrating polymer network with functionalized biopolymers. Drug Dev Ind Pharm. 2017;43(5):732-741. doi:10.1080/03639045.2016.1224894
14.    Huang R, Zhang Y, Wang T, et al. Creation of an assessment system for measuring the bitterness of azithromycin-containing reverse micelles. Asian J Pharm Sci. 2018;13(4):343-352. doi:10.1016/j.ajps.2018.02.001
15.    Al-Omran MF, Al-Suwayeh SA, El-Helw AM, Saleh SI. Taste masking of diclofenac sodium using microencapsulation. J Microencapsul. 2002;19(1):45-52. doi:10.1080/02652040110055612
16.    Mota, Joana, Matrix- And Reservoir-TYPE ORAL Multiparticulate Drug Delivery. Published online 2010.
17.    Adeleke OA. Premium ethylcellulose polymer based architectures at work in drug delivery. Int J Pharm X. 2019;1(July):100023. doi:10.1016/j.ijpx.2019.100023
18.    Alhamidi R, Ibrahim W. Preparation and Evaluation of Taste Masked Paracetamol Microcapsules. Res J Pharm Technol. Published online August 30, 2022:3703-3708. doi:10.52711/0974-360X.2022.00621
19.    Housheh S. Development of Rapid, Simple and Stability-Indicating Method for Determination of Azithromycin Using RP-HPLC. Asian J Pharm Res. 2017;7(2):55. doi:10.5958/2231-5691.2017.00009.0
20.    AV Yadav VY. Azithromycin Recrystallized Agglomerates with Hydrophilic Polymers and Surfactant by Neutralization Technique. Res J Pharm Technol. 2009;2(4):796-802.
21.    Liu M, Yin D, Fu H, et al. Double-coated enrofloxacin microparticles with chitosan and alginate: Preparation, characterization and taste-masking effect study. Carbohydr Polym. 2017;170:247-253. doi:10.1016/j.carbpol.2017.04.071
22.    Zohra Badaoui F, Bouzid D. Statistical Design for Formulation Optimization of Diclofenac Sodium-Loaded Ethylcellulose Microsponges. Res J Pharm Technol. Published online June 28, 2022:2633-2638. doi:10.52711/0974-360X.2022.00440
23.    Gittings S, Turnbull N, Roberts CJ, Gershkovich P. Dissolution methodology for taste masked oral dosage forms. J Control Release. 2014;173:32-42. doi:10.1016/j.jconrel.2013.10.030
24.    Soliman M, Shalaby K, Casettari L, et al. Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks. Int J Nanomedicine. 2014;9(1):4953. doi:10.2147/IJN.S68737
25.    Patel K, Patel M. Preparation and evaluation of chitosan microspheres containing nicorandil. Int J Pharm Investig. 2014;4(1):32. doi:10.4103/2230-973x.127738
26.    Obiedallah MM, Abdel-Mageed AM, Elfaham TH. Ocular administration of acetazolamide microsponges in situ gel formulations. Saudi Pharm J. 2018;26(7):909-920. doi:10.1016/j.jsps.2018.01.005
27.    Piñón-Segundo E, Llera-Rojas VG, Leyva-Gómez G, Urbán-Morlán Z, Mendoza-Muñoz N, Quintanar-Guerrero D. The emulsification-diffusion method to obtain polymeric nanoparticles. In: Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology. Elsevier; 2018:51-83. doi:10.1016/B978-0-12-813629-4.00002-4
28.    Maiti S, Kaity S, Ray S, Sa B. Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenac sodium. Acta Pharm. 2011;61(3):257-270. doi:10.2478/v10007-011-0022-6
29.    Shahzad Y, Saeed S, Ghori MU, et al. Influence of polymer ratio and surfactants on controlled drug release from cellulosic microsponges. Int J Biol Macromol. 2018;109(April 2019):963-970. doi:10.1016/j.ijbiomac.2017.11.089
30.    Kalkotwar RS. Ethyl Cellulose Based Microsponge Delivery System for Anti Fungal Vaginal Gels of Tioconazole. J Drug Deliv Ther. 2013;3(6):14-20. doi:10.22270/jddt.v3i6.679

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available