Author(s):
Florentina Evelyn Purnomo, Sri Agus Sudjarwo, Suryo Kuncorojakti, Heni Puspitasari, Rofiqul A’la, Andi Yasmin Wijaya, Helen Susilowati, Diyantoro, Nusdianto Triakoso, Boedi Setiawan, Fedik Abdul Rantam
Email(s):
fedik-a-r@fkh.unair.ac.id
DOI:
10.52711/0974-360X.2023.00688
Address:
Florentina Evelyn Purnomo1, Sri Agus Sudjarwo2, Suryo Kuncorojakti3,4, Heni Puspitasari4, Rofiqul A’la4, Andi Yasmin Wijaya4, Helen Susilowati4, Diyantoro4,5, Nusdianto Triakoso6, Boedi Setiawan7, Fedik Abdul Rantam4,8*
1Master’s Student, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia.
2Pharmacology Laboratory, Division of Basic Veterinary Science, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia.
3Histology Laboratory, Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia.
4Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Airlangga University, Surabaya, East Java, 60115, Indonesia.
5Department of Health Science, Faculty of Vocational Studies, Airlangga University, Surabaya, East Java, 60115, Indonesia.
6Internal Medicine Department, Airlangga University Animal Hospital, Faculty of
Published In:
Volume - 16,
Issue - 9,
Year - 2023
ABSTRACT:
Context: Vaccination as prevention to hold back the spread of COVID-19 is important since it is the most concerning health issue in the last decade. Inactivated vaccine platforms considered safer, especially for elderly and comorbid patients. Comorbidities especially Tuberculosis and Hepatitis B, has a major impact to COVID-19 infections and vaccination. To evaluate infections or vaccine response IFN- ? and CD4+ are important. IFN-? has a role in antiviral innate response, including initiation of other cytokines, increasing MHC expression, increasing presentation of macrophage, and increasing presentation of antigen to T cell Naïve. CD4+ is associated with humoral immune response. Cynomolgus Monkey or known as Macaca fascicularis. Specifying to comorbid patients, adult Macaca fascicularis that are detected to have hepatitis B and Tuberculosis (TBC) by PCR were treated as a comorbid group. Adult Macaca fascicularis that used in this research have range from 6 to 9 years old. This study was analysed with SPSS 26 general linear model repeated measures analysis with p<0.05 Objectives: To evaluate IFN- ? and CD4+ response of vaccination Result: The result of this study showed significant (p < 0.05) increase in IFN-? and CD4+ evaluation in both comorbid and adult groups. The elevating concentration and percentage could be the sign of induced humoral and adaptive immune system in the body. Conclusion: SARS-CoV-2 inactivated vaccine candidate that used in this study can increase the number of IFN-? concentration as well as percentage of CD4+ in adult and comorbid groups of Cynomolgus Macaques.
Cite this article:
Florentina Evelyn Purnomo, Sri Agus Sudjarwo, Suryo Kuncorojakti, Heni Puspitasari, Rofiqul A’la, Andi Yasmin Wijaya, Helen Susilowati, Diyantoro, Nusdianto Triakoso, Boedi Setiawan, Fedik Abdul Rantam. Analysis of IFN-γ and CD4+ responses in comorbid and adult immunized cynomolgus monkey with inactivated SARS-CoV-2 vaccine candidate. Research Journal of Pharmacy and Technology 2023; 16(9):4206-2. doi: 10.52711/0974-360X.2023.00688
Cite(Electronic):
Florentina Evelyn Purnomo, Sri Agus Sudjarwo, Suryo Kuncorojakti, Heni Puspitasari, Rofiqul A’la, Andi Yasmin Wijaya, Helen Susilowati, Diyantoro, Nusdianto Triakoso, Boedi Setiawan, Fedik Abdul Rantam. Analysis of IFN-γ and CD4+ responses in comorbid and adult immunized cynomolgus monkey with inactivated SARS-CoV-2 vaccine candidate. Research Journal of Pharmacy and Technology 2023; 16(9):4206-2. doi: 10.52711/0974-360X.2023.00688 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-9-32
REFERENCES:
1. World Health Organization. WHO director-general's opening remarks at the media briefing on COVID-19 - 11 march 2020. World Health Organization. Accesed on 20th September 2021, https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 [Online].
2. Wu, Z., Jin, Q., Wu, G., Lu, J., Li, M., Guo, D., Lan, K., Feng, L., Qian, Z., Ren, L., Tan, W., Xu, W., Yang, W., Wang, J., and Wang, C. SARS-COV-2's origin should be investigated worldwide for pandemic prevention. The Lancet. 2021; 398 (10308): 1299–1303. https://doi.org/10.1016/s0140-6736(21)02020-1
3. Lotfi, M., Hamblin, M. R., and Rezaei, N. Covid-19: Transmission, prevention, and potential therapeutic opportunities. Clinica Chimica Acta. 2020; 508: 254–266. https://doi.org/10.1016/j.cca.2020.05.044
4. Rantam, F. A., Prakoeswa, C. R., Tinduh, D., Nugraha, J., Susilowati, H., Wijaya, A. Y., Puspaningsih, N. N., Puspitasari, D., Husada, D., Kurniati, N. D., and Aryati, A. (2021). Characterization of SARS-COV-2 east java isolate, Indonesia. F1000Research, 10, 480. https://doi.org/10.12688/f1000research.53137.1
5. Shehzad A, Kuncorojakti S, Tacharina MR, Ahmad HI, A'la R, Wijaya AY, Tyasningsih W, Rantam FA. Molecular characterization and prediction of B-cell epitopes for the development of SARS-CoV-2 vaccine through bioinformatics approach. J Pharm Pharmacogn Res. 2022; 10(3): 429–444.
6. Sweta, S., and Singh, N. A decisive review to understand the basic fundamentals of novel Corona Viruse Disease. Research Journal of Pharmacology and Pharmacodynamics. 2021; 118–124. https://doi.org/10.52711/2321-5836.2021.00024
7. Dass, S. A., Balakrishnan, V., Arifin, N., Lim, C. S., Nordin, F., and Tye, G. J. The COVID-19/tuberculosis syndemic and potential antibody therapy for TB based on the lessons learnt from the pandemic. Frontiers in Immunology. 2022; 13. https://doi.org/10.3389/fimmu.2022.833715
8. Bruchfeld J, Correia-Neves M, Källenius G. Tuberculosis and HIV Coinfection. Cold Spring Harb Perspect Med. 2015; 5:a017871–a017871. doi: 10.1101/cshperspect.a017871
9. Hamid, Z. A., J. Al-Bayaa, M. S., and Hussain, A. H. Hepatitis B surface antigen level and its correlation with age, gender, and liver biomarkers. Research Journal of Pharmacy and Technology. 2021; 14: 4207–4211. https://doi.org/10.52711/0974-360x.2021.00729
10. Alqahtani, S. A., and Buti, M. Covid-19 and hepatitis B infection. Antiviral Therapy. 2019; 25(8): 389–397. https://doi.org/10.3851/imp3382
11. Kang, S. H., Cho, D.-H., Choi, J., Baik, S. K., Gwon, J. G., and Kim, M. Y. (2021). Association between chronic hepatitis B infection and COVID-19 outcomes: A Korean nationwide Cohort Study. PLOS ONE. 2021; 16(10): https://doi.org/10.1371/journal.pone.0258229
12. Halim, M. A report on covid-19 variants, covid-19 vaccines and the impact of the variants on the efficacy of the Vaccines. Journal of Clinical and Medical Research. 2021; https://doi.org/10.37191/mapsci-2582-4333-3(3)-066
13. Lotfi, M., Hamblin, M. R., and Rezaei, N. COVID-19: Transmission, Prevention, and Potential Therapeutic Opportunities. Clinica Chimica Acta. 2022. doi: 10.1016/j.cca.2020.05.044.
14. Rantam, F. A., Kharisma, V. D., Sumartono, C., Nugraha, J., Wijaya, A. Y., Susilowati, H., Kuncorojakti, S., and Nugraha, A. P. Molecular docking and dynamic simulation of conserved B cell epitope of SARS-COV-2 glycoprotein Indonesian isolates: An immunoinformatic approach. F1000Research. 2021; 10: 813. https://doi.org/10.12688/f1000research.54258.1
15. Wilder-Smith, A., and Mulholland, K. Effectiveness of an inactivated SARS-COV-2 vaccine. New England Journal of Medicine. 2021; 385(10): 946–948. https://doi.org/10.1056/nejme2111165
16. Cramer, J. P. Principles of immunization. Travel Medicine. 2019; 65–73. https://doi.org/10.1016/b978-0-323-54696-6.00009-4
17. Lee, N.-H., Lee, J.-A., Park, S.-Y., Song, C.-S., Choi, I.-S., and Lee, J.-B. A review of vaccine development and research for Industry Animals in Korea. Clinical and Experimental Vaccine Research. 2012; 1(1): 18. https://doi.org/10.7774/cevr.2012.1.1.18
18. Gavin, A. L., Hoebe, K., Duong, B., Ota, T., Martin, C., Beutler, B., and Nemazee, D. Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science. 2006; 314(5807): 1936–1938. https://doi.org/10.1126/science.1135299
19. Shah, R. R., Hassett, K. J., and Brito, L. A. Overview of vaccine adjuvants: Introduction, history, and current status. Methods in Molecular Biology. 2016; 1–13. https://doi.org/10.1007/978-1-4939-6445-1_1
20. Li, X., Geng, M., Peng, Y., Meng, L., and Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis. 2020; 10(2): 102–108. https://doi.org/10.1016/j.jpha.2020.03.001
21. Jara, A., Undurraga, E. A., González, C., Paredes, F., Fontecilla, T., Jara, G., Pizarro, A., Acevedo, J., Leo, K., Leon, F., Sans, C., Leighton, P., Suárez, P., García-Escorza, H., and Araos, R. Effectiveness of an inactivated SARS-COV-2 vaccine in Chile. New England Journal of Medicine. 2021; 385(10): 875–884. https://doi.org/10.1056/nejmoa2107715
22. Schroeder, H. W., and Cavacini, L. Structure and function of Immunoglobulins. Journal of Allergy and Clinical Immunology. 2010; 125(2): https://doi.org/10.1016/j.jaci.2009.09.046
23. Lu, L., Mok, B. W.-Y., Chen, L.-L., Chan, J. M.-C., Tsang, O. T.-Y., Lam, B. H.-S., Chuang, V. W.-M., Chu, A. W.-H., Chan, W.-M., Ip, J. D., Chan, B. P.-C., Zhang, R., Yip, C. C.-Y., Cheng, V. C.-C., Chan, K.-H., Jin, D.-Y., Hung, I. F.-N., Yuen, K.-Y., Chen, H., and To, K. K.-W. Neutralization of severe acute respiratory syndrome coronavirus 2 omicron variant by Sera from BNT162B2 or CoronaVac vaccine recipients. Clinical Infectious Diseases. 2021. https://doi.org/10.1093/cid/ciab1041
24. Lee, A. J., and Ashkar, A. A. The dual nature of type I and type II interferons. Frontiers in Immunology. 2018; 9. https://doi.org/10.3389/fimmu.2018.02061
25. Deka, G., Pkm, N., Redhwan, M. A., and Varghese, M. M. IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Research Journal of Pharmacy and Technology. 2020; 13(8): 4028. https://doi.org/10.5958/0974-360x.2020.00712.x
26. Kak, G., Raza, M., and Tiwari, B. K. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomolecular Concepts. 2018; 9(1): 64–79. https://doi.org/10.1515/bmc-2018-0007
27. Feng, Y., Zhang, Y., He, Z., Huang, H., Tian, X., Wang, G., Chen, D., Ren, Y., Jia, L., Wang, W., Wu, J., Shao, L., Zhang, W., Tang, H. Immunogenicity of an Inactivated SARS-CoV-2 Vaccine in People Living with HIV-1: A Non-Randomized Cohort Study. Lancet E Clinical Medicine. 2022; 43: 101226. https://doi.org/10.1016/j.eclinm.2021.101226
28. Lima, N. S., Moon, D., Darko, S., De La Barrera, R. A., Lin, L., Koren, M. A., Jarman, R. G., Eckels, K. H., Thomas, S. J., Michael, N. L., Modjarrad, K., Douek, D. C., and Trautmann, L. Pre-existing immunity to Japanese encephalitis virus alters CD4 T cell responses to zika virus inactivated vaccine. Frontiers in Immunology. 2021. 12. https://doi.org/10.3389/fimmu.2021.640190
29. Stanton, S. E., Ramos, E., and Disis, M. L. Immunologic approaches to breast cancer therapy. The Breast. 2018. https://doi.org/10.1016/b978-0-323-35955-9.00071-4
30. Al Kaabi, N., Zhang, Y., Xia, S., Yang, Y., Al Qahtani, M. M., Abdulrazzaq, N., Al Nusair, M., Hassany, M., Jawad, J. S., Abdalla, J., Hussein, S. E., Al Mazrouei, S. K., Al Karam, M., Li, X., Yang, X., Wang, W., Lai, B., Chen, W., Huang, S., … Yang, X. Effect of 2 inactivated SARS-COV-2 vaccines on symptomatic COVID-19 infection in adults. JAMA. 2021. https://doi.org/10.1001/jama.2021.8565
31. Luckheeram, R. V., Zhou, R., Verma, A. D., and Xia, B. CD4+T cells: Differentiation and functions. Clinical and Developmental Immunology. 2012; 1–12. https://doi.org/10.1155/2012/925135
32. Gadotti, A. C., de Castro Deus, M., Telles, J. P., Wind, R., Goes, M., Garcia Charello Ossoski, R., de Padua, A. M., de Noronha, L., Moreno-Amaral, A., Baena, C. P., and Tuon, F. F. (2020) IFN-γ is an independent risk factor associated with mortality in patients with moderate and severe COVID-19 infection. Virus Research. 2020; 289: 198171. https://doi.org/10.1016/j.virusres.2020.198171
33. Ali, M. K., Shia, J. S., and Al-marsome, H. D. Detection of HSV and CMV in pregnant and miscarriage women by Elisa and Real Time PCR assay. Research Journal of Pharmacy and Technology. 2019; 12(9): 4090. https://doi.org/10.5958/0974-360x.2019.00704.2
34. Market, M., Tennakoon, G., Ng, J., Scaffidi, M., de Souza, C. T., Kennedy, M. A., and Auer, R. C. A method of assessment of Human Natural Killer Cell Phenotype and function in whole blood. Frontiers in Immunology. 2020; 11. https://doi.org/10.3389/fimmu.2020.00963
35. Abdel-Hamed, E. F., Ibrahim, M. N., Mostafa, N. E., Moawad, H., Elgammal, N. E., Darwiesh, E. M., El-Rafey, D. S., ElBadawy, N. E., Al-Khoufi, E. A., and Hindawi, S. I. Role of interferon gamma in SARS-CoV-2-positive patients with parasitic infections. Gut Pathogens. 2021; 13(1): 29. https://doi.org/10.1186/s13099-021-00427-3
36. Otani, N., Nakajima, K., Ishikawa, K., Ichiki, K., Ueda, T., Takesue, Y., Yamamoto, T., Tanimura, S., Shima, M., and Okuno, T. Changes in cell-mediated immunity (IFN-γ and granzyme B) following influenza vaccination. Viruses. 2021; 13(6): 1137. https://doi.org/10.3390/v13061137
37. Teijaro, J.R., Farber, D.L. COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol. 2021; 21: 195–197 https://doi.org/10.1038/s41577-021-00526-x
38. Heidari, Z., Moudi, B., and Mahmoudzadeh-Sagheb, H. Interferon gamma gene polymorphisms and chronic hepatitis B infections in an Iranian population. The Turkish Journal of Gastroenterology. 2020; 31(7): 515–521. https://doi.org/10.5152/tjg.2020.181024
39. Yudhawan, I., Ediati, S., and Puspitasari, I. Immunomodulatory effect of standardized polysaccharide fraction syrup from noni fruit (morinda citrifolia) on cytokines level (IL-2 and IFN-γ) and its histological evaluation in rats vaccinated with hepatitis-B. Research Journal of Pharmacy and Technology. 2020; 13(2): 882. https://doi.org/10.5958/0974-360x.2020.00167.5
40. Hosseini Khorami, S. H., Nejatollahi, F., and Davarpanah, M. A. Serum levels of interleukin-4, interleukin-10 and interferon-γ in patients with chronic hepatitis B infection. Hepatitis Monthly. 2018; 18(4). https://doi.org/10.5812/hepatmon.60377
41. Sagavkar, S. R., and Devkar, S. R. Tuberculosis: A Review. Asian Journal of Pharmaceutical Research. 2018; 8(3): 191. https://doi.org/10.5958/2231-5691.2018.00033.3
42. Kumar, R., Chawla, A., Gaganpreet, and Diksha. A valuable insight to the novel deadly covid-19: A Review. Research Journal of Pharmacology and Pharmacodynamics. 2020; 12(3): 111. https://doi.org/10.5958/2321-5836.2020.00021.x
43. Green, A. M., Mattila, J. T., Bigbee, C. L., Bongers, K. S., Lin, P. L., and Flynn, J. L. CD4+Regulatory T Cells in a Cynomolgus Macaque Model of Mycobacterium tuberculosis Infection. The Journal of Infectious Diseases. 2010; 202(4): 533–541. doi:10.1086/654896
44. Ye, J., and Chen, J. Interferon and hepatitis B: Current and future perspectives. Frontiers in Immunology. 2021; 12. https://doi.org/10.3389/fimmu.2021.733364
45. Womer, K., and Rabb, H. Immunologic principles in Kidney Transplantation. Comprehensive Clinical Nephrology. 2010; 1119–1133. https://doi.org/10.1016/b978-0-323-05876-6.00096-4
46. Buschow, S. I., and Jansen, D. T. CD4+ T cells in chronic hepatitis B and T cell-directed immunotherapy. Cells. 2021; 10(5): 1114. https://doi.org/10.3390/cells10051114
47. Mohan, A. Hepatitis-B: A Review. J Pharm Pharmacogn Res 2010; 2(2): 165-167.
48. Olawumi, H. O., Olanrewaju, D. O., Shittu, A. O., Durotoye, I. A., Akande, A. A., and Nyamngee, A. Effect of hepatitis-B virus co-infection on CD4 cell count and liver function of HIV infected patients. Ghana Medical Journal. 2014; 48(2): 96. https://doi.org/10.4314/gmj.v48i2.7
49. Hasan, A. S. H., Fayyadh, H. M., and Al-Taie, W. S. S. Prevalence of hepatitis B surface antigen and anti-hepatitis B core antibodies among blood donors in Diyala, Iraq. Asian Journal of Nursing Education and Research. 2018; 8(4): 489. https://doi.org/10.5958/2349-2996.2018.00100.3
50. Crevel, R, Ottenhoff, T. H. M., Meer, J. W. M. Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev. 2002; 15(2): 294-309. doi: 10.1128/CMR.15.2.294-309.2002.
51. Banaei, N., Gaur, R. L., and Pai, M. Interferon gamma release assays for latent tuberculosis: What are the sources of variability? Journal of Clinical Microbiology. 2016; 54(4): 845–850.
52. Sharan, R., Singh, D. K., Rengarajan, J., and Kaushal, D. Characterizing early T cell responses in nonhuman primate model of tuberculosis. Frontiers in Immunology. 2021; 12. https://doi.org/10.3389/fimmu.2021.706723
53. Ravi G Patel, Chirag K Patel, B Panigrahi, CN Patel. Tuberculosis: Pathophysiology, Clinical Features, Diagnosis and Antitubercular Activity of an Actinomycin Produced by a New Species of Streptomyces. Research J. Pharmacology and Pharmacodynamics. 2010; 2(1): 23-26.
54. Patil, P. A., and Jain, R. S. Theoretical study and treatment of novel covid-19. Research Journal of Pharmacology and Pharmacodynamics. 2020; 12(2): 71. https://doi.org/10.5958/2321-5836.2020.00014.2
55. Shokoohifar, N., Ahmady-Asbchin, S., Besharat, S., Roudbari, F., Mohammadi, S., Amiriani, T., Khodabakhshi, B., Norouzi, A., and Shahabinasab, I. The impaired balance of CD4+/CD8+ ratio in patients with chronic hepatitis B. Hepatitis Monthly. 2020; 20(1). https://doi.org/10.5812/hepatmon.96799